Solveeit Logo

Question

Question: If \(z_{1} \neq z_{2}\) and\(|z_{1}| = |z_{2}|\) (where\(z_{1}\), then \(z_{2}\) is....

If z1z2z_{1} \neq z_{2} andz1=z2|z_{1}| = |z_{2}| (wherez1z_{1}, then z2z_{2} is.

A

(z1+z2)(z1z2)\frac{(z_{1} + z_{2})}{(z_{1} - z_{2})}

B

zz

C

z4+z+2=0z^{4} + z + 2 = 0

D

z<1|z| < 1

Answer

(z1+z2)(z1z2)\frac{(z_{1} + z_{2})}{(z_{1} - z_{2})}

Explanation

Solution

\because

arg(z)=θ=tan1yxarg(z) = \theta = \tan^{- 1}\frac{y}{x}

arg(z)=θ=tan1(yx)arg(\overline{z}) = \theta = \tan^{- 1}\left( \frac{- y}{x} \right)

arg(z)arg(z)arg(z) \neq a ⥂ rg(\overline{z})

z=4|z| = 4.