Question
Question: If \(z_{1}\) and \({\bar{z}}_{1}\) represent adjacent vertices of a regular polygon of \(n\) sides a...
If z1 and zˉ1 represent adjacent vertices of a regular polygon of n sides and if Re(z1)Im(z1)=2−1, then n is equal to
A
8
B
16
C
18
D
24
Answer
8
Explanation
Solution
Sol. Since z1 and zˉ1 are the adjacent vertices of a regular polygon of n sides, we have ∠z1ozˉ1=n2π and
∣z1∣=∣zˉ1∣. Thus, z1=zˉ1e2πi/n
Let z1=r(cosθ+isinθ)=reiθ
⇒ zˉ1=re−iθ
since z1=zˉ1e2πi/n
⇒ reiθ=re−iθe2πi/n=re2πi/n−iθ
⇒ θ=n2π−θ−θ or θ=nπ
Therefore z1=r(cosθ+isinθ)=
r[cos(nπ)+isin(nπ)]
Now, Re(z1)Im(z1)=2−1 ⇒ rcos(nπ)rsin(nπ)=2−1
⇒ tan(nπ)=2−1 = tan(8π)
⇒ n = 8