Solveeit Logo

Question

Question: If $z_1 = a_1 + ib_1$ and $z_2 = a_2 + ib_2$ are complex numbers such that $|z_1| = 1, |z_2| = 2$ an...

If z1=a1+ib1z_1 = a_1 + ib_1 and z2=a2+ib2z_2 = a_2 + ib_2 are complex numbers such that z1=1,z2=2|z_1| = 1, |z_2| = 2 and Re(z1z2)=0Re(z_1\overline{z_2}) = 0, then the pair of complex numbers w1=a1+ia22w_1 = a_1 + \frac{ia_2}{2} and w2=2b1+ib2w_2 = 2b_1 + ib_2 satisfy. Then

A

w1=1|w_1| = 1

B

w2=2|w_2| = 2

C

Re(w1w2)=0Re(w_1w_2) = 0

D

Im(w1w2)=2|Im(w_1w_2)| = 2

Answer

A, B, C

Explanation

Solution

Let the given complex numbers be z1=a1+ib1z_1 = a_1 + ib_1 and z2=a2+ib2z_2 = a_2 + ib_2. We are given the following conditions:

  1. z1=1    a12+b12=1    a12+b12=1|z_1| = 1 \implies \sqrt{a_1^2 + b_1^2} = 1 \implies a_1^2 + b_1^2 = 1 (Equation 1)
  2. z2=2    a22+b22=2    a22+b22=4|z_2| = 2 \implies \sqrt{a_2^2 + b_2^2} = 2 \implies a_2^2 + b_2^2 = 4 (Equation 2)
  3. Re(z1z2)=0Re(z_1\overline{z_2}) = 0

First, calculate z1z2z_1\overline{z_2}: z1z2=(a1+ib1)(a2ib2)=a1a2ia1b2+ib1a2i2b1b2z_1\overline{z_2} = (a_1 + ib_1)(a_2 - ib_2) = a_1a_2 - ia_1b_2 + ib_1a_2 - i^2b_1b_2 z1z2=(a1a2+b1b2)+i(b1a2a1b2)z_1\overline{z_2} = (a_1a_2 + b_1b_2) + i(b_1a_2 - a_1b_2)

Since Re(z1z2)=0Re(z_1\overline{z_2}) = 0, we have: a1a2+b1b2=0a_1a_2 + b_1b_2 = 0 (Equation 3)

From Equation 3, we can derive relations between a1,b1,a2,b2a_1, b_1, a_2, b_2. If a20a_2 \ne 0, then a1=b1b2a2a_1 = -\frac{b_1b_2}{a_2}. Substitute this into Equation 1: (b1b2a2)2+b12=1    b12b22a22+b12=1    b12(b22a22+1)=1(-\frac{b_1b_2}{a_2})^2 + b_1^2 = 1 \implies \frac{b_1^2b_2^2}{a_2^2} + b_1^2 = 1 \implies b_1^2(\frac{b_2^2}{a_2^2} + 1) = 1 b12(b22+a22a22)=1b_1^2(\frac{b_2^2 + a_2^2}{a_2^2}) = 1. Using Equation 2 (a22+b22=4a_2^2 + b_2^2 = 4): b12(4a22)=1    4b12=a22b_1^2(\frac{4}{a_2^2}) = 1 \implies 4b_1^2 = a_2^2. This relation also holds if a2=0a_2=0 (which implies b1=0b_1=0). So, a22=4b12a_2^2 = 4b_1^2 (Relation A)

Similarly, if b20b_2 \ne 0, then b1=a1a2b2b_1 = -\frac{a_1a_2}{b_2}. Substitute this into Equation 1: a12+(a1a2b2)2=1    a12+a12a22b22=1    a12(1+a22b22)=1a_1^2 + (-\frac{a_1a_2}{b_2})^2 = 1 \implies a_1^2 + \frac{a_1^2a_2^2}{b_2^2} = 1 \implies a_1^2(1 + \frac{a_2^2}{b_2^2}) = 1 a12(b22+a22b22)=1a_1^2(\frac{b_2^2 + a_2^2}{b_2^2}) = 1. Using Equation 2 (a22+b22=4a_2^2 + b_2^2 = 4): a12(4b22)=1    4a12=b22a_1^2(\frac{4}{b_2^2}) = 1 \implies 4a_1^2 = b_2^2. This relation also holds if b2=0b_2=0 (which implies a1=0a_1=0). So, b22=4a12b_2^2 = 4a_1^2 (Relation B)

Now let's evaluate the options for w1=a1+ia22w_1 = a_1 + \frac{ia_2}{2} and w2=2b1+ib2w_2 = 2b_1 + ib_2.

A. w1=1|w_1| = 1 w12=a1+ia222=a12+(a22)2=a12+a224|w_1|^2 = |a_1 + \frac{ia_2}{2}|^2 = a_1^2 + (\frac{a_2}{2})^2 = a_1^2 + \frac{a_2^2}{4}. Using Relation A (a22=4b12a_2^2 = 4b_1^2): w12=a12+4b124=a12+b12|w_1|^2 = a_1^2 + \frac{4b_1^2}{4} = a_1^2 + b_1^2. Using Equation 1 (a12+b12=1a_1^2 + b_1^2 = 1): w12=1    w1=1|w_1|^2 = 1 \implies |w_1| = 1. So, Option A is true.

B. w2=2|w_2| = 2 w22=2b1+ib22=(2b1)2+b22=4b12+b22|w_2|^2 = |2b_1 + ib_2|^2 = (2b_1)^2 + b_2^2 = 4b_1^2 + b_2^2. Using Relation A (4b12=a224b_1^2 = a_2^2) and Relation B (b22=4a12b_2^2 = 4a_1^2): w22=a22+4a12|w_2|^2 = a_2^2 + 4a_1^2. We also know from Equation 2 that a22+b22=4a_2^2 + b_2^2 = 4. And from Equation 1 that a12+b12=1a_1^2 + b_1^2 = 1. Substitute Relation A and Relation B into Equation 2: 4b12+4a12=4    4(b12+a12)=4    a12+b12=14b_1^2 + 4a_1^2 = 4 \implies 4(b_1^2 + a_1^2) = 4 \implies a_1^2 + b_1^2 = 1, which is consistent with Equation 1. So, w22=4b12+b22=4b12+4a12=4(b12+a12)=4(1)=4|w_2|^2 = 4b_1^2 + b_2^2 = 4b_1^2 + 4a_1^2 = 4(b_1^2 + a_1^2) = 4(1) = 4. w22=4    w2=2|w_2|^2 = 4 \implies |w_2| = 2. So, Option B is true.

C. Re(w1w2)=0Re(w_1w_2) = 0 w1w2=(a1+ia22)(2b1+ib2)w_1w_2 = (a_1 + \frac{ia_2}{2})(2b_1 + ib_2) w1w2=2a1b1+ia1b2+ia2b1a2b22w_1w_2 = 2a_1b_1 + ia_1b_2 + i a_2b_1 - \frac{a_2b_2}{2} Re(w1w2)=2a1b1a2b22Re(w_1w_2) = 2a_1b_1 - \frac{a_2b_2}{2}. We need to check if 2a1b1a2b22=0    4a1b1=a2b22a_1b_1 - \frac{a_2b_2}{2} = 0 \iff 4a_1b_1 = a_2b_2. From Relation A, a2=±2b1a_2 = \pm 2b_1. From Relation B, b2=±2a1b_2 = \pm 2a_1. Substitute these into Equation 3: a1a2+b1b2=0a_1a_2 + b_1b_2 = 0. a1(±2b1)+b1(±2a1)=0a_1(\pm 2b_1) + b_1(\pm 2a_1) = 0. If a2=2b1a_2 = 2b_1 and b2=2a1b_2 = 2a_1: a1(2b1)+b1(2a1)=0    4a1b1=0a_1(2b_1) + b_1(2a_1) = 0 \implies 4a_1b_1 = 0. If a2=2b1a_2 = -2b_1 and b2=2a1b_2 = -2a_1: a1(2b1)+b1(2a1)=0    4a1b1=0a_1(-2b_1) + b_1(-2a_1) = 0 \implies -4a_1b_1 = 0. In both these cases, a1b1=0a_1b_1 = 0, which implies a1=0a_1=0 or b1=0b_1=0. If a1=0a_1=0, then b2=0b_2=0 (from Relation B). If b1=0b_1=0, then a2=0a_2=0 (from Relation A). In these scenarios, a1b1=0a_1b_1=0 and a2b2=0a_2b_2=0, so 4a1b1=a2b2=04a_1b_1 = a_2b_2 = 0 holds. Thus Re(w1w2)=0Re(w_1w_2)=0.

Consider the other two cases for signs: If a2=2b1a_2 = 2b_1 and b2=2a1b_2 = -2a_1: a1(2b1)+b1(2a1)=0    2a1b12a1b1=0    0=0a_1(2b_1) + b_1(-2a_1) = 0 \implies 2a_1b_1 - 2a_1b_1 = 0 \implies 0 = 0. This is always true. In this case, we need to check 4a1b1=a2b24a_1b_1 = a_2b_2. 4a1b1=(2b1)(2a1)=4a1b14a_1b_1 = (2b_1)(-2a_1) = -4a_1b_1. This implies 8a1b1=08a_1b_1 = 0, so a1b1=0a_1b_1=0. This means either a1=0a_1=0 or b1=0b_1=0. If a1=0a_1=0, then b2=0b_2=0 (from b2=2a1b_2=-2a_1). From Equation 1, b1=±1b_1=\pm 1. From Equation 2, a2=±2a_2=\pm 2. The condition a2=2b1a_2=2b_1 means a2a_2 and b1b_1 have the same sign. If b1=1,a2=2b_1=1, a_2=2. Then a1=0,b1=1,a2=2,b2=0a_1=0, b_1=1, a_2=2, b_2=0. Re(w1w2)=2(0)(1)2(0)2=0Re(w_1w_2) = 2(0)(1) - \frac{2(0)}{2} = 0. If b1=1,a2=2b_1=-1, a_2=-2. Then a1=0,b1=1,a2=2,b2=0a_1=0, b_1=-1, a_2=-2, b_2=0. Re(w1w2)=2(0)(1)(2)(0)2=0Re(w_1w_2) = 2(0)(-1) - \frac{(-2)(0)}{2} = 0. So Re(w1w2)=0Re(w_1w_2)=0 holds.

If a2=2b1a_2 = -2b_1 and b2=2a1b_2 = 2a_1: a1(2b1)+b1(2a1)=0    2a1b1+2a1b1=0    0=0a_1(-2b_1) + b_1(2a_1) = 0 \implies -2a_1b_1 + 2a_1b_1 = 0 \implies 0 = 0. This is always true. In this case, we need to check 4a1b1=a2b24a_1b_1 = a_2b_2. 4a1b1=(2b1)(2a1)=4a1b14a_1b_1 = (-2b_1)(2a_1) = -4a_1b_1. This implies 8a1b1=08a_1b_1 = 0, so a1b1=0a_1b_1=0. Again, this means either a1=0a_1=0 or b1=0b_1=0. If a1=0a_1=0, then b2=0b_2=0 (from b2=2a1b_2=2a_1). From Equation 1, b1=±1b_1=\pm 1. From Equation 2, a2=±2a_2=\pm 2. The condition a2=2b1a_2=-2b_1 means a2a_2 and b1b_1 have opposite signs. If b1=1,a2=2b_1=1, a_2=-2. Then a1=0,b1=1,a2=2,b2=0a_1=0, b_1=1, a_2=-2, b_2=0. Re(w1w2)=2(0)(1)(2)(0)2=0Re(w_1w_2) = 2(0)(1) - \frac{(-2)(0)}{2} = 0. If b1=1,a2=2b_1=-1, a_2=2. Then a1=0,b1=1,a2=2,b2=0a_1=0, b_1=-1, a_2=2, b_2=0. Re(w1w2)=2(0)(1)2(0)2=0Re(w_1w_2) = 2(0)(-1) - \frac{2(0)}{2} = 0. So Re(w1w2)=0Re(w_1w_2)=0 holds.

In all cases, Re(w1w2)=0Re(w_1w_2) = 0. So, Option C is true.

D. Im(w1w2)=2|Im(w_1w_2)| = 2 From the calculation for Option C: w1w2=2a1b1a2b22+i(a1b2+a2b1)w_1w_2 = 2a_1b_1 - \frac{a_2b_2}{2} + i(a_1b_2 + a_2b_1). Since Re(w1w2)=0Re(w_1w_2)=0, the expression simplifies to w1w2=i(a1b2+a2b1)w_1w_2 = i(a_1b_2 + a_2b_1). So, Im(w1w2)=a1b2+a2b1Im(w_1w_2) = a_1b_2 + a_2b_1. We need to check if a1b2+a2b1=2|a_1b_2 + a_2b_1| = 2. Let's use the relations a2=±2b1a_2 = \pm 2b_1 and b2=±2a1b_2 = \pm 2a_1. We have four cases for the signs:

  1. a2=2b1a_2 = 2b_1 and b2=2a1b_2 = 2a_1: Im(w1w2)=a1(2a1)+(2b1)b1=2a12+2b12=2(a12+b12)Im(w_1w_2) = a_1(2a_1) + (2b_1)b_1 = 2a_1^2 + 2b_1^2 = 2(a_1^2 + b_1^2). Using Equation 1 (a12+b12=1a_1^2 + b_1^2 = 1): Im(w1w2)=2(1)=2Im(w_1w_2) = 2(1) = 2. Im(w1w2)=2=2|Im(w_1w_2)| = |2| = 2.

  2. a2=2b1a_2 = -2b_1 and b2=2a1b_2 = -2a_1: Im(w1w2)=a1(2a1)+(2b1)b1=2a122b12=2(a12+b12)Im(w_1w_2) = a_1(-2a_1) + (-2b_1)b_1 = -2a_1^2 - 2b_1^2 = -2(a_1^2 + b_1^2). Using Equation 1 (a12+b12=1a_1^2 + b_1^2 = 1): Im(w1w2)=2(1)=2Im(w_1w_2) = -2(1) = -2. Im(w1w2)=2=2|Im(w_1w_2)| = |-2| = 2.

  3. a2=2b1a_2 = 2b_1 and b2=2a1b_2 = -2a_1: Im(w1w2)=a1(2a1)+(2b1)b1=2a12+2b12=2(b12a12)Im(w_1w_2) = a_1(-2a_1) + (2b_1)b_1 = -2a_1^2 + 2b_1^2 = 2(b_1^2 - a_1^2). This value is not necessarily 2. For example, if a1=0,b1=1a_1=0, b_1=1, then Im(w1w2)=2(10)=2Im(w_1w_2)=2(1-0)=2. But if a1=1,b1=0a_1=1, b_1=0, then Im(w1w2)=2(01)=2Im(w_1w_2)=2(0-1)=-2. If a1=1/2,b1=1/2a_1=1/\sqrt{2}, b_1=1/\sqrt{2}, then Im(w1w2)=2(1/21/2)=0Im(w_1w_2)=2(1/2-1/2)=0. Since Im(w1w2)Im(w_1w_2) can be 0, Im(w1w2)|Im(w_1w_2)| is not always 2. For instance, if z1=12+i12z_1 = \frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}, z2=0+i(2)z_2 = 0 + i(2). Then a1=1/2,b1=1/2,a2=0,b2=2a_1=1/\sqrt{2}, b_1=1/\sqrt{2}, a_2=0, b_2=2. z1=1,z2=2|z_1|=1, |z_2|=2. Re(z1z2)=Re((12+i12)(2i))=Re(2i2+22)=220Re(z_1\overline{z_2}) = Re((\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}})(-2i)) = Re(\frac{-2i}{\sqrt{2}} + \frac{2}{\sqrt{2}}) = \frac{2}{\sqrt{2}} \ne 0. So this example does not satisfy all conditions.

Let's re-examine the consistency of the relations a2=2b1a_2 = 2b_1 and b2=2a1b_2 = -2a_1 with a1a2+b1b2=0a_1a_2 + b_1b_2 = 0. a1(2b1)+b1(2a1)=2a1b12a1b1=0a_1(2b_1) + b_1(-2a_1) = 2a_1b_1 - 2a_1b_1 = 0. This is always consistent. Now, Im(w1w2)=a1b2+a2b1=a1(2a1)+(2b1)b1=2a12+2b12=2(b12a12)Im(w_1w_2) = a_1b_2 + a_2b_1 = a_1(-2a_1) + (2b_1)b_1 = -2a_1^2 + 2b_1^2 = 2(b_1^2 - a_1^2). We know a12+b12=1a_1^2+b_1^2=1. So b12=1a12b_1^2 = 1-a_1^2. Im(w1w2)=2((1a12)a12)=2(12a12)Im(w_1w_2) = 2((1-a_1^2) - a_1^2) = 2(1 - 2a_1^2). The value of a12a_1^2 can range from 0 to 1. If a12=0a_1^2 = 0, Im(w1w2)=2(1)=2Im(w_1w_2) = 2(1) = 2. If a12=1a_1^2 = 1, Im(w1w2)=2(12)=2Im(w_1w_2) = 2(1-2) = -2. If a12=1/2a_1^2 = 1/2, Im(w1w2)=2(11)=0Im(w_1w_2) = 2(1-1) = 0. Therefore, Im(w1w2)|Im(w_1w_2)| is not always 2 in this case. It can be 0. For example, let a1=1/2,b1=1/2a_1=1/\sqrt{2}, b_1=1/\sqrt{2}. Then z1=12+i12z_1 = \frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}. Then a2=2b1=2a_2=2b_1=\sqrt{2}, b2=2a1=2b_2=-2a_1=-\sqrt{2}. z2=2i2z_2 = \sqrt{2} - i\sqrt{2}. Check conditions: z12=(1/2)2+(1/2)2=1/2+1/2=1|z_1|^2 = (1/\sqrt{2})^2 + (1/\sqrt{2})^2 = 1/2+1/2=1. So z1=1|z_1|=1. z22=(2)2+(2)2=2+2=4|z_2|^2 = (\sqrt{2})^2 + (-\sqrt{2})^2 = 2+2=4. So z2=2|z_2|=2. Re(z1z2)=Re((12+i12)(2+i2))=Re(12(2+i2)+i2(2+i2))Re(z_1\overline{z_2}) = Re((\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}})(\sqrt{2} + i\sqrt{2})) = Re(\frac{1}{\sqrt{2}}(\sqrt{2}+i\sqrt{2}) + \frac{i}{\sqrt{2}}(\sqrt{2}+i\sqrt{2})) =Re(1+i+i1)=Re(2i)=0= Re(1+i+i-1) = Re(2i) = 0. All conditions are satisfied. Now for w1w_1 and w2w_2: w1=a1+ia22=12+i22=12+i12w_1 = a_1 + \frac{ia_2}{2} = \frac{1}{\sqrt{2}} + i\frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}. w2=2b1+ib2=212+i(2)=2i2w_2 = 2b_1 + ib_2 = 2\frac{1}{\sqrt{2}} + i(-\sqrt{2}) = \sqrt{2} - i\sqrt{2}. w1w2=(12+i12)(2i2)=(12+i12)2(1i)=(1+i)(1i)=1i2=1+1=2w_1w_2 = (\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}})(\sqrt{2} - i\sqrt{2}) = (\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}})\sqrt{2}(1-i) = (1+i)(1-i) = 1-i^2 = 1+1=2. Here, Im(w1w2)=0Im(w_1w_2) = 0. So Im(w1w2)=02|Im(w_1w_2)| = 0 \ne 2. Thus, Option D is not true.

The options that are true are A, B, and C.