Solveeit Logo

Question

Mathematics Question on complex numbers

If z1 and z2 are two complex numbers satisfying the equationz1+z2z1z2=1|\frac{z_1+z_2}{z_1-z_2}|=1, then z1z2\frac{z_1}{z_2} may be

A

real positive

B

real negative

C

zero

D

purely imaginary

Answer

zero

Explanation

Solution

The correct answer is/are option(s):
(C): zero
(D): purely imaginary

z1+z2z1z2=1|\frac{z_1+z_2}{z_1-z_2}|=1

Now,

z1+z2=z1z2\Rightarrow |z_1+z_2|=|z_1-z_2|

z1+z22=z1z22\Rightarrow |z_1+z_2|^2=|z_1-z_2|^2

(z1+z2)(z1+z2)=(z1z2)(z1z2)\Rightarrow (z_1+z_2)(z_1+z_2)=(z_1-z_2)(z_1-z_2)

z12+z22+z1z2+z1z2=z12+z22z1z2z1z2\Rightarrow|z_1|^2+|z_2|^2+z_1z_2+z_1z_2=|z_1|^2+|z_2|^2-z_1z_2-z_1z_2

2(z1z2+z2z1)=0\Rightarrow 2(z_1z_2+z_2z_1)=0

z1z2+z1z2=0\Rightarrow \frac{z_1}{z_2}+\frac{z_1}{z_2}=0

2Re(z1z2)=0=z1z2\Rightarrow 2 Re (\frac{z_1}{z_2})=0=\frac{z_1}{z_2}

Hence it is purely imazinary.