Solveeit Logo

Question

Mathematics Question on complex numbers

If z=x+iyz = x + iy, xy0xy \neq 0, satisfies the equation z2+iz=0z^2 + i\overline{z} = 0, then z2|z|^2 is equal to:

A

9

B

1

C

4

D

14\frac{1}{4}

Answer

1

Explanation

Solution

Given: z2+iz=0z^2 + i\overline{z} = 0 where z=x+iyz = x + iy and z=xiy\overline{z} = x - iy.
Substitute z=x+iyz = x + iy: z2=(x+iy)2=x2y2+2ixyz^2 = (x + iy)^2 = x^2 - y^2 + 2ixy and iz=i(xiy)=ix+yi\overline{z} = i(x - iy) = ix + y
Substitute into the equation: (x2y2+2ixy)+(ix+y)=0(x^2 - y^2 + 2ixy) + (ix + y) = 0
Separate the real and imaginary parts:
From the imaginary part: x(2y+1)=0x(2y + 1) = 0
Since x0x \neq 0, we have 2y+1=0y=122y + 1 = 0 \Rightarrow y = -\frac{1}{2}.
Substitute y=12y = -\frac{1}{2} into the real part: x2(12)2+(12)=0x^2 - \left(-\frac{1}{2}\right)^2 + \left(-\frac{1}{2}\right) = 0 x21412=0x^2 - \frac{1}{4} - \frac{1}{2} = 0 x2=34x=±32x^2 = \frac{3}{4} \Rightarrow x = \pm \frac{\sqrt{3}}{2}
Calculate z2|z|^2: z2=x2+y2=(32)2+(12)2=34+14=1|z|^2 = x^2 + y^2 = \left(\frac{\sqrt{3}}{2}\right)^2 + \left(-\frac{1}{2}\right)^2 = \frac{3}{4} + \frac{1}{4} = 1 z2=1|z|^2 = 1