Solveeit Logo

Question

Mathematics Question on argand plane

If z=x+iy,x,yR,(x,y)(0,4)z= x +iy , x,y \in R , (x,y) \ne (0, -4) and Arg(2z3z+4i)=π4Arg \left( \frac{2z-3}{z+4i}\right) = \frac{\pi}{4} , then the locus of zz is

A

2x2+2y2+5x+5y12=02x^2 + 2y^2 + 5x + 5y - 12 = 0

B

2x23xy+y2+5x+5y12=02x^2 - 3xy + y^2 + 5x + 5y - 12 = 0

C

2x2+3xy+y2+5x+5y12=02x^2 + 3xy + y^2 + 5x + 5y - 12 = 0

D

2x2+2y211x+7y12=02x^2 + 2y^2 - 11 x + 7y - 12 = 0

Answer

2x2+2y2+5x+5y12=02x^2 + 2y^2 + 5x + 5y - 12 = 0

Explanation

Solution

For z=x+iy,x,yR,(x,y)(0,4)z=x+i y, x, y \in R,(x, y) \neq(0,-4)
2z3z+4i=(2x3)+2iyx+i(y+4)×xi(y+4)xi(y+4)\frac{2 z-3}{z+4 i}=\frac{(2 x-3)+2 i y}{x+i(y+4)} \times \frac{x-i(y+4)}{x-i(y+4)}
=(2x23x+2y2+8y)+i(2xy2xy+3y8x+12x2+(y+4)2=\frac{\left(2 x^{2}-3 x+2 y^{2}+8 y\right)+i(2 x y-2 x y+3 y-8 x+12}{x^{2}+(y+4)^{2}}
=(2x23x+2y2+8y)+i(12+3y8x)x2+(y+4)2=\frac{\left(2 x^{2}-3 x+2 y^{2}+8 y\right)+i(12+3 y-8 x)}{x^{2}+(y+4)^{2}}
So, arg(2z3z+4i)=tan1(12+3y8x2x23x+2y2+8y)\arg \left(\frac{2 z-3}{z+4 i}\right)=\tan ^{-1}\left(\frac{12+3 y-8 x}{2 x^{2}-3 x+2 y^{2}+8 y}\right)
=π4=\frac{\pi}{4} (given)
12+3y8x2x23x+2y2+8y=1\Rightarrow \frac{12+3 y-8 x}{2 x^{2}-3 x+2 y^{2}+8 y}=1
2x2+2y2+5x+5y12=0\Rightarrow 2 x^{2}+2 y^{2}+5 x+5 y-12=0