Question
Mathematics Question on argand plane
If z=x+iy,x,y∈R,(x,y)=(0,−4) and Arg(z+4i2z−3)=4π , then the locus of z is
A
2x2+2y2+5x+5y−12=0
B
2x2−3xy+y2+5x+5y−12=0
C
2x2+3xy+y2+5x+5y−12=0
D
2x2+2y2−11x+7y−12=0
Answer
2x2+2y2+5x+5y−12=0
Explanation
Solution
For z=x+iy,x,y∈R,(x,y)=(0,−4)
z+4i2z−3=x+i(y+4)(2x−3)+2iy×x−i(y+4)x−i(y+4)
=x2+(y+4)2(2x2−3x+2y2+8y)+i(2xy−2xy+3y−8x+12
=x2+(y+4)2(2x2−3x+2y2+8y)+i(12+3y−8x)
So, arg(z+4i2z−3)=tan−1(2x2−3x+2y2+8y12+3y−8x)
=4π (given)
⇒2x2−3x+2y2+8y12+3y−8x=1
⇒2x2+2y2+5x+5y−12=0