Question
Mathematics Question on argand plane
If z=x+iy,x,y∈R and the imaginary part of zˉ−izˉ−1 is 1 then the locus of z is
A
x+y+1=0
B
x+y+1=0,(x,y)=(0,−1)
C
x2+y2−x+3y+2=0
D
x2+y2−x+3y+2=0,(x,y)=(0,−1)
Answer
x2+y2−x+3y+2=0,(x,y)=(0,−1)
Explanation
Solution
The correct answer is D:x^2+y^2-x+3y+2=0,(x,y)$$≠(0,-1)
If z=x+iy, then
\frac{\bar{z}-1}{\bar{z}-i}=\frac{x-i y-1}{x-i y-i} \times \frac{x +i(y+ 1 )}{x +i(y+ 1 )}$$=\frac{[x(x-1)+y(y+1)]+i[(y+1)(x-1)-x y]}{x^{2}+(y+1)^{2}}$$\therefore Im \left(\frac{\bar{z}-1}{\bar{z}-i}\right)=\frac{x y-y+x-1-x y}{x^{2}+(y+1)^{2}}=1 (given)
⇒x2+y2−x+3y+2=0,(x,y)=(0,−1)