Solveeit Logo

Question

Mathematics Question on argand plane

If z=x+iy,x,yRz = x + iy , x , y \in R and the imaginary part of zˉ1zˉi\frac{\bar{z} - 1}{\bar{z} - i} is 11 then the locus of zz is

A

x+y+1=0x + y + 1 = 0

B

x+y+1=0,(x,y)(0,1)x + y + 1 = 0, (x, y) \neq (0, - 1)

C

x2+y2x+3y+2=0x^2 + y^2 - x +3y + 2 = 0

D

x2+y2x+3y+2=0,(x,y)(0,1)x^2 + y^2 - x + 3y + 2 = 0 , (x , y) \neq (0 , - 1)

Answer

x2+y2x+3y+2=0,(x,y)(0,1)x^2 + y^2 - x + 3y + 2 = 0 , (x , y) \neq (0 , - 1)

Explanation

Solution

The correct answer is D:x^2+y^2-x+3y+2=0,(x,y)$$≠(0,-1)
If z=x+iyz=x +i y, then
\frac{\bar{z}-1}{\bar{z}-i}=\frac{x-i y-1}{x-i y-i} \times \frac{x +i(y+ 1 )}{x +i(y+ 1 )}$$=\frac{[x(x-1)+y(y+1)]+i[(y+1)(x-1)-x y]}{x^{2}+(y+1)^{2}}$$\therefore Im \left(\frac{\bar{z}-1}{\bar{z}-i}\right)=\frac{x y-y+x-1-x y}{x^{2}+(y+1)^{2}}=1 (given)
x2+y2x+3y+2=0,(x,y)(0,1)\Rightarrow x^{2}+y^{2}-x+3 y+2=0,(x, y) \neq(0,-1)
Imaginary part