Question
Question: If \(z = x + iy\), then area of the triangle whose vertices are points z, iz and \(z + iz\) is...
If z=x+iy, then area of the triangle whose vertices are points z, iz and z+iz is
A
2∣z∣2
B
21∣z∣2
C
∣z∣2
D
23∣z∣2
Answer
21∣z∣2
Explanation
Solution
Sol. Let z=x+iy , z+iz=(x−y)+i(x+y) and iz=−y+ix
If A denotes the area of the triangle formed by z,z+iz and iz, then
$A = \frac{1}{2}\left| \begin{matrix} x \ x - y \
- y \end{matrix}\begin{matrix} y \ x + y \ x \end{matrix}\begin{matrix} 1 \ 1 \ 1 \end{matrix} \right|$
Applying transformation R2→R2−R1−R3)
We get $A = \frac{1}{2}\left| \begin{matrix} x & y & 1 \ 0 & 0 & - 1 \
- y & x & 0 \end{matrix} \right|=\frac{1}{2}(x^{2} + y^{2}) = \frac{1}{2}|z|^{2}$.