Solveeit Logo

Question

Question: If z = x + iy such that \|z + 1\| = \|z – 1\| and amp \(\frac{z - 1}{z + 1}\)=\(\frac{\pi}{4}\) then...

If z = x + iy such that |z + 1| = |z – 1| and amp z1z+1\frac{z - 1}{z + 1}=π4\frac{\pi}{4} then

A

x = Ö2 + 1, y = 0

B

x = 0, y = Ö2 + 1

C

x = 0, y = Ö2 = 1

D

x = Ö2 – 1, y = 0

Answer

x = 0, y = Ö2 + 1

Explanation

Solution

Sol. |z + 1| = |z – 1|  (x + 1)2 + y2 = (x – 1)2 + y2

 x = 0 … (1)

Arg (z1z+1)\left( \frac{z - 1}{z + 1} \right)=π4\frac{\pi}{4}

 arg {[(x1)+iy][x+1iy](x+1)2+y2}\left\{ \frac{\left\lbrack (x - 1) + iy \right\rbrack\lbrack x + 1 - iy\rbrack}{(x + 1)^{2} + y^{2}} \right\}= π4\frac{\pi}{4}

 arg {(x2+y21)+2iy(x+1)2+y2}\left\{ \frac{(x^{2} + y^{2} - 1) + 2iy}{(x + 1)^{2} + y^{2}} \right\}= π4\frac{\pi}{4}

 y > 0, x2 + y2 – 1 > 0, 2yx2+y21\frac{2y}{x^{2} + y^{2} - 1} = 1

 x2 + y2 – 2y – 1 = 0, y > 0, x2 + y2 – 1 > 0.

\ arg (z1z+1)\left( \frac{z - 1}{z + 1} \right)=π4\frac{\pi}{4}

is the arc ABC of the circle x2 + y2 – 2y – 1 = 0

Solving with x = 0, we get

y = 2±82\frac{2 \pm \sqrt{8}}{2} = 1 ฑ 2\sqrt{2}, y > 0, \ y = 1 + ึ2.