Question
Question: If \(z=x+iy\) satisfies \(\arg (z-1)=\arg (z+3i),\) then value of \(\left( x-1 \right):y\) is equal ...
If z=x+iy satisfies arg(z−1)=arg(z+3i), then value of (x−1):y is equal to
A. 2:1B. 1:3C. -1:3D. None of these
Solution
First we substitute the value of z in the given expression arg(z−1)=arg(z+3i), and simplify the expression. Then use the property arg(a+ib)=tan−1ab and substitute the value. When we simplify the equations we get the value of (x−1):y.
Complete step by step answer:
We have given that z=x+iy satisfies arg(z−1)=arg(z+3i),
We have to find the value of (x−1):y
Now, as given z=x+iy, when substitute the value in the given arg, we get
arg(z−1)=arg(z+3i)⇒arg(x+iy−1)=arg(x+iy+3i)⇒arg((x−1)+iy)=arg(x+i(y+3))
Now, we know that arg(a+ib)=tan−1ab
So, the equation becomes
⇒tan−1x−1y=tan−1xy+3
When, we simplify the above equation we get
⇒x−1y=xy+3
Now, cross multiply the equations, we get
⇒xy=(y+3)(x−1)⇒xy=xy−y+3x−3⇒xy−xy=−y+3x−3⇒0=−y+3x−3⇒y=3(x−1)
Now, we have to find the value of (x−1):y, so from above equation we get
y(x−1)=31
So, the correct answer is “Option B”.
Note: Alternatively students try to solve the question directly by simplifying the equations as
& \arg (z-1)=\arg (z+3i) \\\ & \Rightarrow \arg (x+iy-1)=\arg (x+iy+3i) \\\ & \Rightarrow \arg \left( \left( x-1 \right)+iy \right)=\arg \left( x+i\left( y+3 \right) \right) \\\ & \Rightarrow \left( \left( x-1 \right)+iy \right)=\left( x+i\left( y+3 \right) \right) \\\ & \Rightarrow \left( \left( x-1 \right)+iy \right)=\left( x+iy+3i \right) \\\ & \Rightarrow x-1+iy=x+iy+3i \\\ & \Rightarrow x-1=x+3i \\\ \end{aligned}$$ but didn’t reach the conclusion. So, it is necessary to apply the property $\arg \left( a+ib \right)={{\tan }^{-1}}\dfrac{b}{a}$.