Solveeit Logo

Question

Question: If \(z = x + iy\) is a complex number such that \({\left( {\overline z } \right)^{\dfrac{1}{3}}} = a...

If z=x+iyz = x + iy is a complex number such that (z)13=a+ib{\left( {\overline z } \right)^{\dfrac{1}{3}}} = a + ib, then the value of 1a2+b2(xa+yb)=\dfrac{1}{{{a^2} + {b^2}}}\left( {\dfrac{x}{a} + \dfrac{y}{b}} \right) =
A. -1
B. -2
C. 0
D. 2

Explanation

Solution

according to the question we have to find the value of 1a2+b2(xa+yb)\dfrac{1}{{{a^2} + {b^2}}}\left( {\dfrac{x}{a} + \dfrac{y}{b}} \right)when z=x+iyz = x + iy is a complex number such that (z)13=a+ib{\left( {\overline z } \right)^{\dfrac{1}{3}}} = a + ib
So, first of all we have to taking cube both side of the given expression (z)13=a+ib{\left( {\overline z } \right)^{\dfrac{1}{3}}} = a + iband put the conjugate of zz that is z=xiy\overline z = x - iy
Formula used for the cube of (a+b)\left( {a + b} \right) that is mentioned below.

Formula used:
(a+b)3=a3+b3+3ab(a+b).............................(A){\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab(a + b).............................(A)
Now, we have to compare both real and imaginary roots of xiyx - iyand the expression obtained after taking the cube of a+iba + ibto get the values of xa\dfrac{x}{a}and yb\dfrac{y}{b}
Now, we have to put the values of xa\dfrac{x}{a}and yb\dfrac{y}{b}in the given expression 1a2+b2(xa+yb)\dfrac{1}{{{a^2} + {b^2}}}\left( {\dfrac{x}{a} + \dfrac{y}{b}} \right)to get the desired value.

Complete answer:
Step 1: First of all we have to taking cube both side of the given expression (z)13=a+ib{\left( {\overline z } \right)^{\dfrac{1}{3}}} = a + ib
z=(a+ib)3\Rightarrow \overline z = {(a + ib)^3}
Now, use the formula of cube (A) that is mentioned in the solution hint.
(xiy)=a3+(ib)3+3(a)(ib)(a+ib) (xiy)=a3+i3b3+3a2(ib)+3a(ib)2  \Rightarrow (x - iy) = {a^3} + {\left( {ib} \right)^3} + 3\left( a \right)\left( {ib} \right)\left( {a + ib} \right) \\\ \Rightarrow (x - iy) = {a^3} + {i^3}{b^3} + 3{a^2}\left( {ib} \right) + 3a{\left( {ib} \right)^2} \\\
As we know that i2=1{i^2} = - 1and i3=i{i^3} = - i
(xiy)=a3ib3+3a2(ib)3ab2 (xiy)=a33ab2+i(3a2bb3).......................(1)  \Rightarrow (x - iy) = {a^3} - i{b^3} + 3{a^2}\left( {ib} \right) - 3a{b^2} \\\ \Rightarrow (x - iy) = {a^3} - 3a{b^2} + i\left( {3{a^2}b - {b^3}} \right).......................(1) \\\
Step 3: Now, we have to compare the both real and imaginary values of the expression (1) as obtained in the solution step 2.
x=(a33ab2)\Rightarrow x = \left( {{a^3} - 3a{b^2}} \right)and, y=((3a2bb3))y = - \left( {\left( {3{a^2}b - {b^3}} \right)} \right)
xa=(a23b2)\Rightarrow \dfrac{x}{a} = \left( {{a^2} - 3{b^2}} \right)and, yb=((3a2+b2))...............................(2)\dfrac{y}{b} = \left( {\left( { - 3{a^2} + {b^2}} \right)} \right)...............................(2)
Step 4: Now, we have to the values of xa\dfrac{x}{a}and yb\dfrac{y}{b}from the expression (2) in the given expression1a2+b2(xa+yb)\dfrac{1}{{{a^2} + {b^2}}}\left( {\dfrac{x}{a} + \dfrac{y}{b}} \right)

1a2+b2((a23b2)+(3a2+b2)) 1a2+b2(a23a2+b23b2)  \Rightarrow \dfrac{1}{{{a^2} + {b^2}}}\left( {\left( {{a^2} - 3{b^2}} \right) + \left( { - 3{a^2} + {b^2}} \right)} \right) \\\ \Rightarrow \dfrac{1}{{{a^2} + {b^2}}}\left( {{a^2} - 3{a^2} + {b^2} - 3{b^2}} \right) \\\

Now, solving the expression as obtained just above,

\Rightarrow \dfrac{1}{{{a^2} + {b^2}}}\left( { - 2{b^2} - 2{a^2}} \right) \\\ \Rightarrow \dfrac{1}{{{a^2} + {b^2}}}\left\\{ { - 2\left( {{a^2} + {b^2}} \right)} \right\\} \\\

On eliminating the terms which can be eliminated,
2\Rightarrow - 2

Hence, we have obtained the value of 1a2+b2(xa+yb)=2\dfrac{1}{{{a^2} + {b^2}}}\left( {\dfrac{x}{a} + \dfrac{y}{b}} \right) = - 2. Therefore option (B) is correct.

Note:
It is necessary that we have to find the cube of the expression given in the question then we can compare the real and imaginary roots with the conjugate of z which is z=xiy\overline z = x - iy and where z is =x+iy = x + iy.
It is necessary that we have to find the value of xa\dfrac{x}{a}and yb\dfrac{y}{b}with the help of comparing the expression of terms x and y.