Solveeit Logo

Question

Question: If \[z=x+iy\] and \[w=\dfrac{1-iz}{z-i}\] , show that \[\left| w \right|=1\Rightarrow z\] is purely ...

If z=x+iyz=x+iy and w=1izziw=\dfrac{1-iz}{z-i} , show that w=1z\left| w \right|=1\Rightarrow z is purely real.

Explanation

Solution

Hint: Put w=1\left| w \right|=1 i.e. 1izzi=1\left| \dfrac{1-iz}{z-i} \right|=1 . Now, use the property z1z2=z1z2\left| \dfrac{{{z}_{1}}}{{{z}_{2}}} \right|=\dfrac{\left| {{z}_{1}} \right|}{\left| {{z}_{2}} \right|} and cross multiply the equation and further square both sides. Apply the property of complex number, given as z=zz\left| z \right|=z\overline{z} .

Complete step-by-step answer:
Now, simplify the expression and hence, put z=x+iyz=x+iy and z=xiy\overline{z}=x-iy to get the relation. And use the fact that any complex number z=x+iyz=x+iy will be real if y=0y=0 .

As, it is given in the problem that w=1izziw=\dfrac{1-iz}{z-i} ………………………………(i)
Where, z=x+iyz=x+iy
And hence, we have to prove that if w=1\left| w \right|=1 then z is purely real i.e.
w=1z\left| w \right|=1\Rightarrow z is purely real.
So, let us suppose w=1\left| w \right|=1 …………………………………….(ii)
Hence, taking modulus of equation (i) to both sides, we get
w=1izzi\left| w \right|=\left| \dfrac{1-iz}{z-i} \right|
As w=1\left| w \right|=1 from the equation (ii). So, we can re-write the above equation as
1izzi=1\Rightarrow \left| \dfrac{1-iz}{z-i} \right|=1 ……………………………….(iii)
Now, as we know the property related to modulus of complex number is
z1z2=z1z2\left| \dfrac{{{z}_{1}}}{{{z}_{2}}} \right|=\dfrac{\left| {{z}_{1}} \right|}{\left| {{z}_{2}} \right|} ………………………………..(iv)
Hence, equation (iii) with the help of equation (iv) is given as
1izzi=1\Rightarrow \dfrac{\left| 1-iz \right|}{\left| z-i \right|}=1
On cross multiplying the above equation, we get
1iz=zi\left| 1-iz \right|=\left| z-i \right|
Squaring both sides of the above equation, we get
1iz2=zi2{{\left| 1-iz \right|}^{2}}={{\left| z-i \right|}^{2}} ……………………………………….(v)
Now, as we know an identity related to modulus of complex number is given as,
z2=zz\Rightarrow {{\left| z \right|}^{2}}=z\overline{z} ………………………………..(vi)
Where z\overline{z} is conjugate of z.
Hence, we get the equation (v) with the help of equation (vi) as
(1zi)(1iz)=(zi)(zi)\Rightarrow \left( 1-zi \right)\left( \overline{1-iz} \right)=\left( z-i \right)\left( \overline{z-i} \right) ………………………………(vii)
Now, we know z1+z2+z3+.....zn=z1+z2+z3+.....zn\overline{{{z}_{1}}+{{z}_{2}}+{{z}_{3}}+.....{{z}_{n}}}=\overline{{{z}_{1}}}+\overline{{{z}_{2}}}+\overline{{{z}_{3}}}+.....\overline{{{z}_{n}}} …………………………(viii)
Hence, we get the equation (viii) as
(1zi)(1iz)=(zi)(zi)\Rightarrow \left( 1-zi \right)\left( \overline{1}-\overline{iz} \right)=\left( z-i \right)\left( \overline{z}-\overline{i} \right) ………………………………..(ix)
Now, we know z1z2=z1z2\overline{{{z}_{1}}{{z}_{2}}}=\overline{{{z}_{1}}}\cdot \overline{{{z}_{2}}} …………………………(x)
And if z=x+iyz=x+iy, then z=xiy\overline{z}=x-iy
So, we get equation (ix) as
(1iz)(1iz)=(zi)(z+i)\Rightarrow \left( 1-iz \right)\left( 1-\overline{i}\overline{z} \right)=\left( z-i \right)\left( \overline{z}+i \right)
(1iz)(1+iz)=(zi)(z+i)\Rightarrow \left( 1-iz \right)\left( 1+i\overline{z} \right)=\left( z-i \right)\left( \overline{z}+i \right)
Now, on simplifying the above equation, we get the above equation as
1+izizi2zz=zz+ziizi2\Rightarrow 1+i\overline{z}-iz-{{i}^{2}}z\overline{z}=z\overline{z}+zi-i\overline{z}-{{i}^{2}}
As, i2=1{{i}^{2}}=-1 ,so, we get
1+iziz+zz=zz+ziiz+11+i\overline{z}-iz+z\overline{z}=z\overline{z}+zi-i\overline{z}+1
Now, cancelling out the same terms from both the sides, we get the above equation as
iziz=+ziiz\Rightarrow i\overline{z}-iz=+zi-i\overline{z}
iz+iz=zi+zi\Rightarrow i\overline{z}+i\overline{z}=zi+zi
2zi=2zi\Rightarrow 2\overline{z}i=2zi
z=z\Rightarrow \overline{z}=z
Now, putting z=x+iyz=x+iy to the above equation, we get
xiy=x+iy\Rightarrow x-iy=x+iy
2iy=0\Rightarrow 2iy=0
y=0\Rightarrow y=0
Hence, we get z=x+iy=x+i0=xz=x+iy=x+i0=x
So, z=xz=x
Hence, complex number z is real as the imaginary part of z is 0. So, if w=1z\left| w \right|=1\Rightarrow z is real.

Note: One may directly put z=x+iyz=x+iy to the given expression w=1izziw=\dfrac{1-iz}{z-i} and hence, simplify the relation and get the equation in a+iba+ib form, now put the modulus of that expression as 1 because w=1\left| w \right|=1. Hence, it can be another approach but will take time and expression may become complex by involvement of x and y. So, the property of complex numbers will always make the solution of these kinds of problems much more flexible and less time taking.
z2=zz{{\left| z \right|}^{2}}=z\overline{z} is the most important property for this kind of problem and remember this property for future reference. There are a lot of good problems based on this single property. And using it in this problem is the key point as well.