Solveeit Logo

Question

Question: If z = sec<sup>–1</sup>\(\left( x + \frac{1}{x} \right)\)+sec<sup>–1</sup>\(\left( y + \frac{1}{y} \...

If z = sec–1(x+1x)\left( x + \frac{1}{x} \right)+sec–1(y+1y)\left( y + \frac{1}{y} \right), where xy> 0, then the value of z (among the given values) is not possible-

A

5π6\frac{5\pi}{6}

B

7π10\frac{7\pi}{10}

C

9π10\frac{9\pi}{10}

D

5π3\frac{5\pi}{3}

Answer

5π3\frac{5\pi}{3}

Explanation

Solution

xy > 0 ̃ x & y are of same sign

x + 1x\frac{1}{x} ³ 2 or £ – 2

sec–1(x+1x)\left( x + \frac{1}{x} \right) Î [π3,π2)\left\lbrack \frac{\pi}{3},\frac{\pi}{2} \right) È (π2,2π3]\left( \frac{\pi}{2},\frac{2\pi}{3} \right\rbrack

\ z Î [2π3,π)\left\lbrack \frac{2\pi}{3},\pi \right) È (π,4π3]\left( \pi,\frac{4\pi}{3} \right\rbrack

Hence, value of z (among the given) which does not lie in the

set is 5π3\frac{5\pi}{3}.