Solveeit Logo

Question

Question: If z satisfies \|z + 1\| \< \|z – 2\|, then w = 3z + 2 + i satisfies –...

If z satisfies |z + 1| < |z – 2|, then w = 3z + 2 + i satisfies –

A

|w + 1| < |w – 8|

B

|w + 1| < |w – 7|

C

w +ωˉ\bar{\omega}> 7

D

|w + 5| < |w – 4|

Answer

|w + 1| < |w – 8|

Explanation

Solution

Sol. We have |z + 1| < |z – 2|

Ž (z + 1) (zˉ\bar{z} + 1) < (z – 2) (zˉ\bar{z}– 2)

Ž zzˉ\bar{z} + z + zˉ\bar{z} + 1 < zzˉ\bar{z} – 2z – 2zˉ\bar{z} + 4

Ž 3(z + zˉ\bar{z}) < 3 Ž z + zˉ\bar{z} < 1. … (1)

Now w + ωˉ\bar{\omega} = (3z + 2 + i) + (3zˉ\bar{z} + 2 – i)

= 3 (z +zˉ\bar{z}) + 4 < 3(1) + 4 = 7

\ w + ωˉ\bar{\omega} < 7 … (2)

(1) |w + 1| < |w – 8|

If (w + 1) (ωˉ\bar{\omega} + 1) < (w – 8) (ωˉ\bar{\omega} – 8)

If ωωˉ\omega\bar{\omega} + w + ωˉ\bar{\omega} + 1 <ωωˉ\omega\bar{\omega} – 8w – 8ωˉ8\bar{\omega} + 64

If 9(w + ωˉ\bar{\omega}) < 63 if w + ωˉ\bar{\omega} < 7, which is true.