Question
Question: If z satisfies \|z + 1\| \< \|z – 2\|, then w = 3z + 2 + i satisfies –...
If z satisfies |z + 1| < |z – 2|, then w = 3z + 2 + i satisfies –
A
|w + 1| < |w – 8|
B
|w + 1| < |w – 7|
C
w +ωˉ> 7
D
|w + 5| < |w – 4|
Answer
|w + 1| < |w – 8|
Explanation
Solution
Sol. We have |z + 1| < |z – 2|
Ž (z + 1) (zˉ + 1) < (z – 2) (zˉ– 2)
Ž zzˉ + z + zˉ + 1 < zzˉ – 2z – 2zˉ + 4
Ž 3(z + zˉ) < 3 Ž z + zˉ < 1. … (1)
Now w + ωˉ = (3z + 2 + i) + (3zˉ + 2 – i)
= 3 (z +zˉ) + 4 < 3(1) + 4 = 7
\ w + ωˉ < 7 … (2)
(1) |w + 1| < |w – 8|
If (w + 1) (ωˉ + 1) < (w – 8) (ωˉ – 8)
If ωωˉ + w + ωˉ + 1 <ωωˉ – 8w – 8ωˉ + 64
If 9(w + ωˉ) < 63 if w + ωˉ < 7, which is true.