Solveeit Logo

Question

Mathematics Question on complex numbers

If zz satisfies the equation zz=1+2i|z|-z=1+2 i, then zz is equal to

A

32+2i\frac{3}{2} + 2i

B

322i\frac{3}{2} - 2i

C

232i2 - \frac{3}{2} i

D

2+32i2 + \frac{3}{2} i

Answer

322i\frac{3}{2} - 2i

Explanation

Solution

We have, zz=1+2i|z|-z=1+2 i
If z=x+iyz=x +i y, then this equation reduces to
x+iy(x+iy)=1+2i|x +i y|-(x +i y)=1+2 i
(x2+y2x)+(iy)=1+2i\Rightarrow \left(\sqrt{x^{2}+y^{2}}-x\right)+(-i y)=1+2 i
On comparing real and imaginary parts of both sides of this equation, we get x2+y2x=1\sqrt{x^{2}+y^{2}}-x=1
x2+y2=1+x\Rightarrow \sqrt{x^{2}+y^{2}}=1+x
x2+y2=(1+x)2\Rightarrow x^{2}+y^{2}=(1+x)^{2}
x2+y2=1+x2+2x\Rightarrow x^{2}+y^{2}=1+x^{2}+2 x
y2=1+2x\Rightarrow y^{2}=1+2 x ...(i)
and y=2-y=2
y=2\Rightarrow y=-2
Putting this value in E (i), we get
(2)2=1+2x(-2)^{2}=1+2 x
2x=3\Rightarrow 2 x=3
x=32\Rightarrow x =\frac{3}{2}
Hence, z=x+iyz =x +i y
=322i=\frac{3}{2}-2 i