Solveeit Logo

Question

Question: If z represents a complex number then find the value of \(\arg \left( z \right) + \arg \left( {\over...

If z represents a complex number then find the value of arg(z)+arg(z).\arg \left( z \right) + \arg \left( {\overline z } \right).
A.π4\dfrac{\pi }{4}
B.π2\dfrac{\pi }{2}
C.0
D.π4 - \dfrac{\pi }{4}

Explanation

Solution

Hint: We are going to use the basic properties of argument of complex numbers to solve the given problem.

Given z is a complex number.
We need to find the value of arg(z)+arg(z).\arg \left( z \right) + \arg \left( {\overline z } \right).
[ \because arg (x) + arg (y) = arg (xy)]
=arg(zz)= \arg \left( {z\overline z } \right)
=arg(z2)= \arg \left( {{{\left| z \right|}^2}} \right)
= arg (real number) = 0

Note: The argument of a complex number is defined as the angle inclined from the real axis in the direction of the complex number represented on the complex plane. Let’s take a complex number a = x+iy, then a=x2+y2\left| a \right| = \sqrt {{x^2} + {y^2}} .