Solveeit Logo

Question

Question: If \({{z}_{r}}=\cos \left( \dfrac{\pi }{{{3}^{r}}} \right)\) \(+i\sin \left( \dfrac{\pi }{{{3}^{r}}}...

If zr=cos(π3r){{z}_{r}}=\cos \left( \dfrac{\pi }{{{3}^{r}}} \right) +isin(π3r)+i\sin \left( \dfrac{\pi }{{{3}^{r}}} \right) ,r=1,2,3,...1,2,3,... then z1.z2.z3...={{z}_{1}}.{{z}_{2}}.{{z}_{3}}...\infty =
A.ii
B.i-i
C.11
D.1-1

Explanation

Solution

We can use the Euler’s formula eiθ=cosθ+isinθ{{e}^{i\theta }}=\cos \theta +i\sin \theta to find value of z1,z2,..zn{{z}_{1}},{{z}_{2}},..{{z}_{n}}. Then put the values and use formula of infinite G.P.- S=a1r\dfrac{a}{1-r} where ‘a’ is the first term and r is the common ratio and r<1\left| \text{r} \right|<1

Complete step-by-step answer:

Given, zr=cos(π3r){{z}_{r}}=\cos \left( \dfrac{\pi }{{{3}^{r}}} \right) +isin(π3r)+i\sin \left( \dfrac{\pi }{{{3}^{r}}} \right)-- (i)
Where r=1,2,3,...1,2,3,...
Then we have to find the value of z1.z2.z3...{{z}_{1}}.{{z}_{2}}.{{z}_{3}}...\infty
We know that Euler’s formula is-
eiθ=cosθ+isinθ\Rightarrow {{e}^{i\theta }}=\cos \theta +i\sin \theta
On putting the value of θ=π3r\theta =\dfrac{\pi }{{{3}^{r}}} , we get
eiπ3r=cosπ3r+isinπ3r\Rightarrow {{e}^{i\dfrac{\pi }{{{3}^{\text{r}}}}}}=\cos \dfrac{\pi }{{{3}^{r}}}+i\sin \dfrac{\pi }{{{3}^{r}}} --- (ii)
From eq. (i) and (ii), we get-
zr=eiπ3r\Rightarrow {{z}_{\text{r}}}={{e}^{i\dfrac{\pi }{{{3}^{\text{r}}}}}}-- (ii)
Now on putting the value of r=1,2,3,...1,2,3,..., we get-
z1=eiπ31\Rightarrow {{z}_{1}}={{e}^{i\dfrac{\pi }{{{3}^{1}}}}}
z2=eiπ32\Rightarrow {{z}_{2}}={{e}^{i\dfrac{\pi }{{{3}^{2}}}}}
- - - - - -
zn=eiπ3n\Rightarrow {{z}_{n}}={{e}^{i\dfrac{\pi }{{{3}^{n}}}}}
Then we can write
z1.z2.z3...={{z}_{1}}.{{z}_{2}}.{{z}_{3}}...\infty = eiπ31.eiπ32.eiπ33...{{e}^{i\dfrac{\pi }{{{3}^{1}}}}}.{{e}^{i\dfrac{\pi }{{{3}^{2}}}}}.{{e}^{i\dfrac{\pi }{{{3}^{3}}}}}...\infty
Here the base of the multiplication is identical or same so the raised powers are added.
So the eq. becomes-
z1.z2.z3...=eiπ3+iπ32+iπ33+...\Rightarrow {{z}_{1}}.{{z}_{2}}.{{z}_{3}}...\infty ={{e}^{i\dfrac{\pi }{3}+i\dfrac{\pi }{{{3}^{2}}}+i\dfrac{\pi }{{{3}^{3}}}+...\infty }}
On taking iota common we get,
z1.z2.z3...=ei(π3+π32+π33+...)\Rightarrow {{z}_{1}}.{{z}_{2}}.{{z}_{3}}...\infty ={{e}^{i\left( \dfrac{\pi }{3}+\dfrac{\pi }{{{3}^{2}}}+\dfrac{\pi }{{{3}^{3}}}+...\infty \right)}}
Here the raised power of e is in infinite G.P. so we can use the following formula to the sum of the terms-
\Rightarrow S=a1r\dfrac{a}{1-r} where ‘a’ is the first term and r is the common ratio and r<1\left| \text{r} \right|<1
Here the first term a=π3\dfrac{\pi }{3} and common ratio is=13\dfrac{1}{3}
On putting these values in the formula we get,
S=π3113\Rightarrow S=\dfrac{\dfrac{\pi }{3}}{1-\dfrac{1}{3}}
On solving we get,
S=π3313=π2\Rightarrow S=\dfrac{\dfrac{\pi }{3}}{\dfrac{3-1}{3}}=\dfrac{\pi }{2}
On putting this value in the equation we get,
z1.z2.z3...=eiπ2\Rightarrow {{z}_{1}}.{{z}_{2}}.{{z}_{3}}...\infty ={{e}^{i\dfrac{\pi }{2}}} -- (iii)
Now we know that
eiθ=cosθ+isinθ\Rightarrow {{e}^{i\theta }}=\cos \theta +i\sin \theta
On using this formula we get,
eiπ2=cosπ2+isinπ2\Rightarrow {{e}^{i\dfrac{\pi }{2}}}=\cos \dfrac{\pi }{2}+i\sin \dfrac{\pi }{2}
We know thatcosπ2=0\cos \dfrac{\pi }{2}=0 and sinπ2=1\sin \dfrac{\pi }{2}=1 . On putting these values we get,
eiπ2=0+i×1\Rightarrow {{e}^{i\dfrac{\pi }{2}}}=0+i\times 1 =i=i
On putting this value in Eq. (iii) we get
z1.z2.z3...=i\Rightarrow {{z}_{1}}.{{z}_{2}}.{{z}_{3}}...\infty =i
Hence the correct answer is A.

Note: Don’t confuse the formula of infinite G.P. with finite G.P. The formula of finite G.P. is-
Sn=a(rn1)r1\Rightarrow {{S}_{n}}=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}
Where r is the common ratio, ‘a’ is the first term and n is the number of terms.
In Infinite G.P. series-

  1. The series is said to be convergent when 1<r<1-1< r < 1 which means it has a sum.
  2. The series is said to be divergent when r>1r>1 or r<1r<-1 which means it has no sum.
  3. In the series, if r1r\ge 1 then the sum of the infinite G.P. series tends to infinity.