Solveeit Logo

Question

Question: If \[{z_r} = \cos \left( {\dfrac{\pi }{{{3^r}}}} \right) + i\sin \left( {\dfrac{\pi }{{{3^r}}}} \rig...

If zr=cos(π3r)+isin(π3r){z_r} = \cos \left( {\dfrac{\pi }{{{3^r}}}} \right) + i\sin \left( {\dfrac{\pi }{{{3^r}}}} \right) , r=1,2,3,...,r = 1,2,3,..., then z1.z2.z3...{z_1}.{z_2}.{z_3}...\infty =
A) i
B) -i
C) 1
D) -1

Explanation

Solution

We are given equation zr=cos(π3r)+isin(π3r){z_r} = \cos \left( {\dfrac{\pi }{{{3^r}}}} \right) + i\sin \left( {\dfrac{\pi }{{{3^r}}}} \right) . Now we write it in terms of exponential, then equate it to zr{z_r} . Then assume (eiπ)=t({e^{i\pi }}) = t . Put this value in z1.z2.z3...{z_1}.{z_2}.{z_3}...\infty to find the product, then we solve the series using G.P. On simplification we will get our result.

Complete step by step solution:
Given,
zr=cos(π3r)+isin(π3r)\Rightarrow {z_r} = \cos \left( {\dfrac{\pi }{{{3^r}}}} \right) + i\sin \left( {\dfrac{\pi }{{{3^r}}}} \right) ….(1)
We know that,
eiθ=cosθ+isinθ\Rightarrow {e^{i\theta }} = \cos \theta + i\sin \theta
Therefore, we can write
cos(π3r)+isin(π3r)=eiπ3r\Rightarrow \cos \left( {\dfrac{\pi }{{{3^r}}}} \right) + i\sin \left( {\dfrac{\pi }{{{3^r}}}} \right) = {e^{\dfrac{{i\pi }}{{{3^r}}}}} ….(2)
From equation (1) and (2)
zr=eiπ3r\Rightarrow {z_r} = {e^{\dfrac{{i\pi }}{{{3^r}}}}}
On simplification
zr=(eiπ)13r\Rightarrow {z_r} = {({e^{i\pi }})^{\dfrac{1}{{{3^r}}}}} ….(3)
Consider (eiπ)=t({e^{i\pi }}) = t ….(4)
Using equation (4) in (3)
zr=(t)13r\Rightarrow {z_r} = {\left( t \right)^{\dfrac{1}{{{3^r}}}}} ….(5)
We have to find the value of z1.z2.z3...{z_1}.{z_2}.{z_3}...\infty …(6)
Therefore, from equations (5) and (6)
z1.z2.z3...=(t)13r\Rightarrow {z_1}.{z_2}.{z_3}...\infty = {\left( t \right)^{\dfrac{1}{{{3^r}}}}}
Taking r as 1, 2, 3, … \infty
z1.z2.z3...=t(13+19+127+...+)\Rightarrow {z_1}.{z_2}.{z_3}...\infty = {t^{\left( {\dfrac{1}{3} + \dfrac{1}{9} + \dfrac{1}{{27}} + ... + \infty } \right)}} ….(5)
Since, 13+19+127+...+\dfrac{1}{3} + \dfrac{1}{9} + \dfrac{1}{{27}} + ... + \infty is an infinite G.P.
Whose first term
a=13\Rightarrow a = \dfrac{1}{3}
And common ratio
r=13\Rightarrow r = \dfrac{1}{3}
r<1\because \left| r \right| < 1
Therefore,
s=a1r\Rightarrow {s_\infty } = \dfrac{a}{{1 - r}} ….(6)
Here s{s_\infty } denotes the sum of infinite terms.
Therefore, putting the values of a and r in equation (6)
s=(13113)\Rightarrow {s_\infty } = \left( {\dfrac{{\dfrac{1}{3}}}{{1 - \dfrac{1}{3}}}} \right)
On simplifying the denominator, we get,
s=(13313)\Rightarrow {s_\infty } = \left( {\dfrac{{\dfrac{1}{3}}}{{\dfrac{{3 - 1}}{3}}}} \right)
On simplification we get,
s=12\Rightarrow {s_\infty } = \dfrac{1}{2} …..(7)
Therefore, the value of 13+19+127+...+=12\dfrac{1}{3} + \dfrac{1}{9} + \dfrac{1}{{27}} + ... + \infty = \dfrac{1}{2} ….(
Now we will put the value of (8) in (5)
z1.z2.z3...=t12\Rightarrow {z_1}.{z_2}.{z_3}...\infty = {t^{\dfrac{1}{2}}} ….(9)
Put the value of (4) in (9)
z1.z2.z3...=(eiπ)12\Rightarrow {z_1}.{z_2}.{z_3}...\infty = {({e^{i\pi }})^{\dfrac{1}{2}}} ….(10)
We can write
eiπ2=cos(π2)+isin(π2)\Rightarrow {e^{\dfrac{{i\pi }}{2}}} = \cos \left( {\dfrac{\pi }{2}} \right) + i\sin \left( {\dfrac{\pi }{2}} \right) ….(11)
From, equation (10) and (11)
z1.z2.z3...=cos(π2)+isin(π2)\Rightarrow {z_1}.{z_2}.{z_3}...\infty = \cos \left( {\dfrac{\pi }{2}} \right) + i\sin \left( {\dfrac{\pi }{2}} \right) ….(12)
The value of cos(π2)\cos \left( {\dfrac{\pi }{2}} \right) is 0 and the value of sin(π2)\sin \left( {\dfrac{\pi }{2}} \right) is 1. Putting these values in equation (12).
We have,
z1.z2.z3...=0+i\Rightarrow {z_1}.{z_2}.{z_3}...\infty = 0 + i
z1.z2.z3...=i\Rightarrow {z_1}.{z_2}.{z_3}...\infty = i
Therefore, the value of z1.z2.z3...=i{z_1}.{z_2}.{z_3}...\infty = i

Hence, Option (A) is correct.

Note:
You may get confused in solving equations and may think like which equation is to be put in. You can find difficulty in converting equations containing exponential values to equations containing sine and cosine values.
Euler's formula is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that for any real number x:
eix=cosx+isinx{e^{ix}} = \cos x + i\sin x
where e is the base of the natural logarithm, i is the imaginary unit, and cos and sin are the trigonometric functions cosine and sine respectively.