Solveeit Logo

Question

Question: If \[{z_r} = \cos \dfrac{{r\alpha }}{{{n^2}}} + i\sin \dfrac{{r\alpha }}{{{n^2}}}\] , where \[r = 1,...

If zr=cosrαn2+isinrαn2{z_r} = \cos \dfrac{{r\alpha }}{{{n^2}}} + i\sin \dfrac{{r\alpha }}{{{n^2}}} , where r=1,2,3....nr = 1,2,3....n then limn(z1z2......zn)\mathop {\lim }\limits_{n \to \infty } \left( {{z_1} \cdot {z_2}......{z_n}} \right) is equal to
A) cosα+isinα\cos \alpha + i\sin \alpha
B) cosα+isinα\cos \alpha + i\sin \alpha
C) eiα2{e^{\dfrac{{i\alpha }}{2}}}
D) eiα\sqrt {{e^{i\alpha }}}

Explanation

Solution

Here we need to find the value of the given expression. We will first use the Euler’s formula for the given complex number and write it in the exponential form. Then we will put the values of the variable in the complex number and substitute it in the given expression. We will simplify it to get the required value of the given expression.

Complete step by step solution:
We know the Euler’s formula for the complex number is eiθ=cosθ+isinθ{e^{i\theta }} = \cos \theta + i\sin \theta .
Now, we will apply this formula to a given complex number. Therefore, we get
zr=cosrαn2+isinrαn2=eirαn2{z_r} = \cos \dfrac{{r\alpha }}{{{n^2}}} + i\sin \dfrac{{r\alpha }}{{{n^2}}} = {e^{i\dfrac{{r\alpha }}{{{n^2}}}}}
zr=eirαn2\Rightarrow {z_r} = {e^{i\dfrac{{r\alpha }}{{{n^2}}}}} …………. (1)\left( 1 \right)
Now, we will find the value of z1{z_1} by substituting the value of rr as 1. Therefore, we get
z1=eiαn2{z_1} = {e^{\dfrac{{i\alpha }}{{{n^2}}}}}
Similarly, we will find the value of z2{z_2} substituting the value of rr as 2. So,
z2=ei2αn2{z_2} = {e^{\dfrac{{i2\alpha }}{{{n^2}}}}}
Similarly, we get a generalized equation as:
zn=einαn2{z_n} = {e^{\dfrac{{in\alpha }}{{{n^2}}}}}
But here we have to calculate the value of limn(z1z2......zn)\mathop {\lim }\limits_{n \to \infty } \left( {{z_1} \cdot {z_2}......{z_n}} \right).
Now, we will substitute all these values in the given expression.
limn(z1z2......zn)=limn(eiαn2ei2αn2ei3αn2.......einαn2)\mathop {\lim }\limits_{n \to \infty } \left( {{z_1} \cdot {z_2}......{z_n}} \right) = \mathop {\lim }\limits_{n \to \infty } \left( {{e^{\dfrac{{i\alpha }}{{{n^2}}}}} \cdot {e^{\dfrac{{i2\alpha }}{{{n^2}}}}} \cdot {e^{\dfrac{{i3\alpha }}{{{n^2}}}}}.......{e^{\dfrac{{in\alpha }}{{{n^2}}}}}} \right)
We know that when we multiply the exponents with the same base, their powers get added.
limn(z1z2......zn)=limn(eiαn2+i2αn2+i3αn2+.......+inαn2)\Rightarrow \mathop {\lim }\limits_{n \to \infty } \left( {{z_1} \cdot {z_2}......{z_n}} \right) = \mathop {\lim }\limits_{n \to \infty } \left( {{e^{\dfrac{{i\alpha }}{{{n^2}}} + }}{{^{\dfrac{{i2\alpha }}{{{n^2}}} + }}^{\dfrac{{i3\alpha }}{{{n^2}}} + .......}}^{ + \dfrac{{in\alpha }}{{{n^2}}}}} \right)
On further simplifying the exponent, we get
limn(z1z2......zn)=limneiαn2(1+2+3+.....+n)\Rightarrow \mathop {\lim }\limits_{n \to \infty } \left( {{z_1} \cdot {z_2}......{z_n}} \right) = \mathop {\lim }\limits_{n \to \infty } {e^{\dfrac{{i\alpha }}{{{n^2}}}\left( {1 + 2 + 3 + ..... + n} \right)}}
We know the formula sum of series 1+2+3+....+n1 + 2 + 3 + .... + n is equal to n(n+1)2\dfrac{{n\left( {n + 1} \right)}}{2} .
Now, using the formula in the exponent of the above question, we get
limn(z1z2......zn)=limneiαn2×(n+1)n2\Rightarrow \mathop {\lim }\limits_{n \to \infty } \left( {{z_1} \cdot {z_2}......{z_n}} \right) = \mathop {\lim }\limits_{n \to \infty } {e^{\dfrac{{i\alpha }}{{{n^2}}} \times \dfrac{{\left( {n + 1} \right)n}}{2}}}
On multiplying the exponents, we get
limn(z1z2......zn)=limneiα2(1+1n)\Rightarrow \mathop {\lim }\limits_{n \to \infty } \left( {{z_1} \cdot {z_2}......{z_n}} \right) = \mathop {\lim }\limits_{n \to \infty } {e^{\dfrac{{i\alpha }}{2}\left( {1 + \dfrac{1}{n}} \right)}}
On applying the limits, we get
limn(z1z2......zn)=eiα2(1+0)=eiα2\Rightarrow \mathop {\lim }\limits_{n \to \infty } \left( {{z_1} \cdot {z_2}......{z_n}} \right) = {e^{\dfrac{{i\alpha }}{2}\left( {1 + 0} \right)}} = {e^{\dfrac{{i\alpha }}{2}}}
On further simplifying the exponents, we get
limn(z1z2......zn)=eiα×12=eiα\Rightarrow \mathop {\lim }\limits_{n \to \infty } \left( {{z_1} \cdot {z_2}......{z_n}} \right) = {e^{i\alpha \times \dfrac{1}{2}}} = \sqrt {{e^{i\alpha }}}

Hence, the correct option is option D.

Note:
To solve such types of problems, we need to know the basic properties of limits and also the exponentials. When two or more exponents with the same base are multiplied then their powers get added. Similarly, when we divide one exponential by another exponential of the same base then their powers are subtracted. We might make a mistake by applying the limit in the beginning as this gives us an answer as infinity. Therefore, we must apply limits at the end of the calculation.