Solveeit Logo

Question

Question: If z =\(\left( \frac{\sqrt{3} + i}{2} \right)^{5} + \left( \frac{\sqrt{3} - i}{2} \right)^{5},\text{...

If z =(3+i2)5+(3i2)5, then\left( \frac{\sqrt{3} + i}{2} \right)^{5} + \left( \frac{\sqrt{3} - i}{2} \right)^{5},\text{ then}

A

Re(z) = 0

B

Im(z) = 0

C

Re(z), Im (z) > 0

D

Re(z) > 0, Im(z) < 0

Answer

Im(z) = 0

Explanation

Solution

Sol. z=(3+i2)5+(3i2)5z = \left( \frac{\sqrt{3} + i}{2} \right)^{5} + \left( \frac{\sqrt{3} - i}{2} \right)^{5}=(eiπ/6)5+(eiπ/6)5\left( e^{i\pi/6} \right)^{5} + \left( e^{- i\pi/6} \right)^{5}=ei5π/6+ei5π/6e^{i5\pi/6} + e^{- i5\pi/6}

= 2cos5π6\frac{5\pi}{6}= –2 cosπ6\frac{\pi}{6} = –3\sqrt{3}.

Thus Im(z) = 0