Solveeit Logo

Question

Question: If \(z={{\left( \dfrac{\sqrt{3}}{2}+\dfrac{i}{2} \right)}^{5}}+{{\left( \dfrac{\sqrt{3}}{2}-\dfrac{i...

If z=(32+i2)5+(32i2)5z={{\left( \dfrac{\sqrt{3}}{2}+\dfrac{i}{2} \right)}^{5}}+{{\left( \dfrac{\sqrt{3}}{2}-\dfrac{i}{2} \right)}^{5}} , then
(a) Re(z) = 0
(b) Im(z) = 0
(c) Re(z)>0,Im(z)>0\operatorname{Re}(z)>0,\operatorname{Im}(z)>0
(d) Re(z)>0,Im(z)<0\operatorname{Re}(z)>0,\operatorname{Im}(z)<0

Explanation

Solution

Hint: The complex number is of the form z=x+iyz=x+iy, where x is known as real part of complex number z and y is known as imaginary part of complex number z and you can use the formula eiθ=cosθ+isinθ{{e}^{i\theta }}=\cos \theta +i\sin \theta .

Complete step-by-step answer:
Let us consider the given expression
z=(32+i2)5+(32i2)5z={{\left( \dfrac{\sqrt{3}}{2}+\dfrac{i}{2} \right)}^{5}}+{{\left( \dfrac{\sqrt{3}}{2}-\dfrac{i}{2} \right)}^{5}}
We know that cos(π6)=32\cos \left( \dfrac{\pi }{6} \right)=\dfrac{\sqrt{3}}{2} and sin(π6)=12\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2} and we replace this values in the given expression,
z=(cos(π6)+isin(π6))5+(cos(π6)isin(π6))5z={{\left( \cos \left( \dfrac{\pi }{6} \right)+i\sin \left( \dfrac{\pi }{6} \right) \right)}^{5}}+{{\left( \cos \left( \dfrac{\pi }{6} \right)-i\sin \left( \dfrac{\pi }{6} \right) \right)}^{5}}
We know that the Euler’s formula for the complex number, cosθ+isinθ=eiθ\cos \theta +i\sin \theta ={{e}^{i\theta }}
z=(eiπ6)5+(eiπ6)5z={{\left( {{e}^{i\dfrac{\pi }{6}}} \right)}^{5}}+{{\left( {{e}^{-i\dfrac{\pi }{6}}} \right)}^{5}}
By using the indices formula (xa)b=xab{{\left( {{x}^{a}} \right)}^{b}}={{x}^{ab}} and we have
z=ei5π6+ei5π6z={{e}^{i\dfrac{5\pi }{6}}}+{{e}^{-i\dfrac{5\pi }{6}}}
Again, applying the Euler’s formula of a complex number in the reserve order eiθ=cosθ+isinθ{{e}^{i\theta }}=\cos \theta +i\sin \theta
z=[cos(5π6)+isin(5π6)]+[cos(5π6)isin(5π6)]z=\left[ \cos \left( \dfrac{5\pi }{6} \right)+i\sin \left( \dfrac{5\pi }{6} \right) \right]+\left[ \cos \left( \dfrac{5\pi }{6} \right)-i\sin \left( \dfrac{5\pi }{6} \right) \right]
Rearrange the term 5π6=ππ6\dfrac{5\pi }{6}=\pi -\dfrac{\pi }{6} in the above expression, we get
z=[cos(ππ6)+isin(ππ6)]+[cos(ππ6)isin(ππ6)]z=\left[ \cos \left( \pi -\dfrac{\pi }{6} \right)+i\sin \left( \pi -\dfrac{\pi }{6} \right) \right]+\left[ \cos \left( \pi -\dfrac{\pi }{6} \right)-i\sin \left( \pi -\dfrac{\pi }{6} \right) \right]
Applying the allied angle formulas cos(ππ6)=cosπ6\cos \left( \pi -\dfrac{\pi }{6} \right)=-\cos \dfrac{\pi }{6} and sin(ππ6)=sinπ6\sin \left( \pi -\dfrac{\pi }{6} \right)=\sin \dfrac{\pi }{6}, we get
z=[cos(π6)+isin(π6)]+[cos(π6)isin(π6)]z=\left[ -\cos \left( \dfrac{\pi }{6} \right)+i\sin \left( \dfrac{\pi }{6} \right) \right]+\left[ -\cos \left( \dfrac{\pi }{6} \right)-i\sin \left( \dfrac{\pi }{6} \right) \right]
Rearranging the terms, we get
z=cos(π6)+isin(π6)cos(π6)isin(π6)z=-\cos \left( \dfrac{\pi }{6} \right)+i\sin \left( \dfrac{\pi }{6} \right)-\cos \left( \dfrac{\pi }{6} \right)-i\sin \left( \dfrac{\pi }{6} \right)
Cancelling the term isin(π6)i\sin \left( \dfrac{\pi }{6} \right) on the right side, we get
z=cos(π6)cos(π6)z=-\cos \left( \dfrac{\pi }{6} \right)-\cos \left( \dfrac{\pi }{6} \right)
z=2cos(π6)z=-2\cos \left( \dfrac{\pi }{6} \right)
We have cos(π6)=32\cos \left( \dfrac{\pi }{6} \right)=\dfrac{\sqrt{3}}{2} and replace this value in the above expression, we get
z=2×32z=-2\times \dfrac{\sqrt{3}}{2}
z=3z=-\sqrt{3}
It can be also written as
z=3+i0z=-\sqrt{3}+i0
Now comparing this complex number with the general complex number z=x+iyz=x+iy, we get
x=3x=-\sqrt{3} and y=0y=0
Hence the imaginary part of the given expression is zero.
Therefore, the correct option for the given question is option (b).

Note: Alternatively, the question is solved as follows
The polar form the complex number is z=r(cosθ+isinθ)z=r\left( \cos \theta +i\sin \theta \right) where r2=34+14=1{{r}^{2}}=\dfrac{3}{4}+\dfrac{1}{4}=1 and θ=π6\theta =\dfrac{\pi }{6}. Thereforez=r5[ei5θ+ei5θ]z={{r}^{5}}\left[ {{e}^{i5\theta }}+{{e}^{-i5\theta }} \right], put r = 1 and by using De-Moivre’s theorem. This gives z=2cos5θz=2\cos 5\theta . Hence it is a real number that means the imaginary part in the complex number is zero.