Solveeit Logo

Question

Question: If z is a unimodular complex number such that Re(z - 1) + Re($z^2$) = $\int_{0}^{\pi/2}$ sin x ln | ...

If z is a unimodular complex number such that Re(z - 1) + Re(z2z^2) = 0π/2\int_{0}^{\pi/2} sin x ln | sin x - cos x | dx, then z can satisfy

A

z + zˉ\bar{z} = -2

B

z + zˉ\bar{z} = 1

C

arg(z) = π3\frac{\pi}{3}

D

arg z = π\pi

Answer

(1), (2), (3), (4)

Explanation

Solution

The problem requires us to find which conditions a unimodular complex number zz can satisfy, given an equation involving its real part and an integral.

1. Evaluate the integral: Let the given integral be II. I=0π/2sinxlnsinxcosxdxI = \int_{0}^{\pi/2} \sin x \ln |\sin x - \cos x| dx

Using the property abf(x)dx=abf(a+bx)dx\int_a^b f(x) dx = \int_a^b f(a+b-x) dx: I=0π/2sin(π/2x)lnsin(π/2x)cos(π/2x)dxI = \int_{0}^{\pi/2} \sin(\pi/2 - x) \ln |\sin(\pi/2 - x) - \cos(\pi/2 - x)| dx I=0π/2cosxlncosxsinxdxI = \int_{0}^{\pi/2} \cos x \ln |\cos x - \sin x| dx

Since A=A|A| = |-A|, we have cosxsinx=sinxcosx|\cos x - \sin x| = |\sin x - \cos x|. So, I=0π/2cosxlnsinxcosxdxI = \int_{0}^{\pi/2} \cos x \ln |\sin x - \cos x| dx.

Adding the two expressions for II: 2I=0π/2(sinx+cosx)lnsinxcosxdx2I = \int_{0}^{\pi/2} (\sin x + \cos x) \ln |\sin x - \cos x| dx. Let u=sinxcosxu = \sin x - \cos x. Then du=(cosx+sinx)dxdu = (\cos x + \sin x) dx. When x=0x=0, u=sin0cos0=01=1u = \sin 0 - \cos 0 = 0 - 1 = -1. When x=π/2x=\pi/2, u=sin(π/2)cos(π/2)=10=1u = \sin(\pi/2) - \cos(\pi/2) = 1 - 0 = 1.

Substituting these into the integral: 2I=11lnudu2I = \int_{-1}^{1} \ln |u| du. Since lnu\ln|u| is an even function, 11lnudu=201lnudu\int_{-1}^{1} \ln |u| du = 2 \int_{0}^{1} \ln u du. We know that lnudu=ulnuu\int \ln u du = u \ln u - u. So, 2I=2[ulnuu]01=2[(1ln11)limu0+(ulnuu)]2I = 2 [u \ln u - u]_0^1 = 2 [(1 \ln 1 - 1) - \lim_{u \to 0^+} (u \ln u - u)]. As ln1=0\ln 1 = 0 and limu0+ulnu=0\lim_{u \to 0^+} u \ln u = 0: 2I=2[(01)(00)]=2(1)=22I = 2 [(0 - 1) - (0 - 0)] = 2(-1) = -2. Therefore, I=1I = -1.

2. Simplify the Left Hand Side (LHS): Given that zz is a unimodular complex number, its modulus is 1, i.e., z=1|z|=1. Let z=x+iyz = x + iy, where x,yRx, y \in \mathbb{R}. From z=1|z|=1, we have x2+y2=1x^2 + y^2 = 1.

Re(z - 1) = Re((x - 1) + iy) = x1x - 1. z2=(x+iy)2=x2y2+2ixyz^2 = (x + iy)^2 = x^2 - y^2 + 2ixy. Re(z2z^2) = x2y2x^2 - y^2. Substitute y2=1x2y^2 = 1 - x^2 (from x2+y2=1x^2+y^2=1): Re(z2z^2) = x2(1x2)=x21+x2=2x21x^2 - (1 - x^2) = x^2 - 1 + x^2 = 2x^2 - 1.

Now, substitute these back into the LHS: LHS = Re(z - 1) + Re(z2z^2) = (x1)+(2x21)=2x2+x2(x - 1) + (2x^2 - 1) = 2x^2 + x - 2.

3. Equate LHS and RHS: We have LHS = 2x2+x22x^2 + x - 2 and RHS = 1-1. 2x2+x2=12x^2 + x - 2 = -1 2x2+x1=02x^2 + x - 1 = 0. This is a quadratic equation in xx. We can factor it: (2x1)(x+1)=0(2x - 1)(x + 1) = 0. This gives two possible values for x=Re(z)x = \text{Re}(z): x=1/2x = 1/2 or x=1x = -1.

4. Check the options based on possible values of xx: Recall that for a complex number z=x+iyz = x+iy with z=1|z|=1, x=cos(arg(z))x = \cos(\arg(z)). Also, z+zˉ=(x+iy)+(xiy)=2xz + \bar{z} = (x+iy) + (x-iy) = 2x.

Case 1: x=1/2x = 1/2 If x=1/2x = 1/2, then z+zˉ=2(1/2)=1z + \bar{z} = 2(1/2) = 1. This matches option (2). To find yy, use y2=1x2y^2 = 1 - x^2: y2=1(1/2)2=11/4=3/4y^2 = 1 - (1/2)^2 = 1 - 1/4 = 3/4. So, y=±3/2y = \pm \sqrt{3}/2. The possible values for zz are z=1/2+i3/2z = 1/2 + i\sqrt{3}/2 or z=1/2i3/2z = 1/2 - i\sqrt{3}/2. If z=1/2+i3/2z = 1/2 + i\sqrt{3}/2, then z=eiπ/3z = e^{i\pi/3}. So, arg(z)=π/3\arg(z) = \pi/3. This matches option (3). If z=1/2i3/2z = 1/2 - i\sqrt{3}/2, then z=eiπ/3z = e^{-i\pi/3}. So, arg(z)=π/3\arg(z) = -\pi/3 (or 5π/35\pi/3).

Case 2: x=1x = -1 If x=1x = -1, then z+zˉ=2(1)=2z + \bar{z} = 2(-1) = -2. This matches option (1). To find yy, use y2=1x2y^2 = 1 - x^2: y2=1(1)2=11=0y^2 = 1 - (-1)^2 = 1 - 1 = 0. So, y=0y = 0. The only possible value for zz is z=1+i(0)=1z = -1 + i(0) = -1. If z=1z = -1, then z=eiπz = e^{i\pi}. So, arg(z)=π\arg(z) = \pi. This matches option (4).

Since the question asks "z can satisfy", it means any condition that holds for at least one valid zz is a correct option. We have found that:

  • z+zˉ=2z+\bar{z}=-2 is satisfied by z=1z=-1.
  • z+zˉ=1z+\bar{z}=1 is satisfied by z=1/2+i3/2z=1/2+i\sqrt{3}/2 (or z=1/2i3/2z=1/2-i\sqrt{3}/2).
  • arg(z)=π/3\arg(z)=\pi/3 is satisfied by z=1/2+i3/2z=1/2+i\sqrt{3}/2.
  • arg(z)=π\arg(z)=\pi is satisfied by z=1z=-1.

Therefore, all the given options are conditions that zz can satisfy.