Question
Question: If z is a complex number with modulus 1, then the equation \(\left( \frac{1 + ia}{1 - ia} \right)^{4...
If z is a complex number with modulus 1, then the equation (1−ia1+ia)4 = z has –
All roots real and distinct
Two roots real and two roots imaginary
Three roots real and one root imaginary
One root real and three roots imaginary
All roots real and distinct
Solution
Sol. We have (1−ia1+ia)4= z and |z| = 1.
Let (1−ia1+ia)4= cos q + i sin q
Ž 1−ia1+ia = (cos q + i sin q)1/4
= (cos (2kp + q) + sin (2kp + q))1/4 , k Ī Z
= cos (42kπ+θ) + i sin (42kπ+θ), k = 0, 1, 2, 3
\ 1−ia1+ia = cos a + i sin a, where a = 42kπ+θ
Ž 2ia2= cosα+isinα−1cosα+isinα+1
=−2sin22α+2isin2αcos2α2cos22α+2isin2αcos2α = 2isin2α(cos2α+isin2α)2cos2α(cos2α+isin2α)
= i1cot 2α
\ ia = i tan 2αŽ a = tan 2α
\ a = tan82kπ+θ, k = 0, 1, 2, 3 = tan8θ, tan (4π+8θ), tan(2π+8θ), tan(43π+8θ)
\ All roots are real and distinct.