Solveeit Logo

Question

Question: If z is a complex number with modulus 1, then the equation \(\left( \frac{1 + ia}{1 - ia} \right)^{4...

If z is a complex number with modulus 1, then the equation (1+ia1ia)4\left( \frac{1 + ia}{1 - ia} \right)^{4} = z has –

A

All roots real and distinct

B

Two roots real and two roots imaginary

C

Three roots real and one root imaginary

D

One root real and three roots imaginary

Answer

All roots real and distinct

Explanation

Solution

Sol. We have (1+ia1ia)4\left( \frac{1 + ia}{1 - ia} \right)^{4}= z and |z| = 1.

Let (1+ia1ia)4\left( \frac{1 + ia}{1 - ia} \right)^{4}= cos q + i sin q

Ž 1+ia1ia\frac{1 + ia}{1 - ia} = (cos q + i sin q)1/4

= (cos (2kp + q) + sin (2kp + q))1/4 , k Ī Z

= cos (2kπ+θ4)\left( \frac{2k\pi + \theta}{4} \right) + i sin (2kπ+θ4)\left( \frac{2k\pi + \theta}{4} \right), k = 0, 1, 2, 3

\ 1+ia1ia\frac{1 + ia}{1 - ia} = cos a + i sin a, where a = 2kπ+θ4\frac{2k\pi + \theta}{4}

Ž 22ia\frac{2}{2ia}= cosα+isinα+1cosα+isinα1\frac{\cos\alpha + i\sin\alpha + 1}{\cos\alpha + i\sin\alpha - 1}

=2cos2α2+2isinα2cosα22sin2α2+2isinα2cosα2\frac{2\cos^{2}\frac{\alpha}{2} + 2i\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}}{- 2\sin^{2}\frac{\alpha}{2} + 2i\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}} = 2cosα2(cosα2+isinα2)2isinα2(cosα2+isinα2)\frac{2\cos\frac{\alpha}{2}\left( \cos\frac{\alpha}{2} + i\sin\frac{\alpha}{2} \right)}{2i\sin\frac{\alpha}{2}\left( \cos\frac{\alpha}{2} + i\sin\frac{\alpha}{2} \right)}

= 1i\frac{1}{i}cot α2\frac{\alpha}{2}

\ ia = i tan α2\frac{\alpha}{2}Ž a = tan α2\frac{\alpha}{2}

\ a = tan2kπ+θ8\frac{2k\pi + \theta}{8}, k = 0, 1, 2, 3 = tanθ8\frac{\theta}{8}, tan (π4+θ8)\left( \frac{\pi}{4} + \frac{\theta}{8} \right), tan(π2+θ8)\left( \frac{\pi}{2} + \frac{\theta}{8} \right), tan(3π4+θ8)\left( \frac{3\pi}{4} + \frac{\theta}{8} \right)

\ All roots are real and distinct.