Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If ZZ is a complex number with IZI=1I Z I = 1 and Z+1Z=x+iyZ + \frac{1}{Z} = x + iy, then xy=xy =

A

00

B

11

C

22

D

cannotbefoundcannot\, be\, found

Answer

00

Explanation

Solution

We have, Z=1|Z| = 1 and Z+1Z=x+iyZ + \frac{1}{Z} = x + iy
Let Z=P+iQZ = P + iQ
P2+Q2=1P2+Q2=1\therefore \:\:\:\: \sqrt{P^2 + Q^2} = 1\:\:\: \Rightarrow \:\: P^2 + Q^2 = 1
Now Z+1Z=x+iyZ + \frac{1}{Z} = x + iy
P+iQ+1P+iQ=x+iy\therefore\:\:\:\: P +iQ + \frac{1}{P +iQ} = x + iy
P+iQ+PiQP2+Q2=x+iy\Rightarrow P +iQ + \frac{P - iQ}{P^{2} +Q^{2}} =x +iy
P+iQ+PiQ=x+iy(P2+Q2=1)\Rightarrow P+iQ + P - iQ = x + iy \left(\because\:\:\: P^{2} +Q^{2} = 1\right)
2P=x+iy\Rightarrow 2P = x + iy
Equating coefficients of real and imaginary parts, we get
x=2Px = 2P and y=0 y = 0
xy=0\therefore \:\: xy = 0