Solveeit Logo

Question

Question: If z is a complex number which simultaneously satisfies the equations $3|z - 12| = 5|z - 8i|$ and $|...

If z is a complex number which simultaneously satisfies the equations 3z12=5z8i3|z - 12| = 5|z - 8i| and z4=z8|z - 4| = |z - 8|, then Im(z) can be

A

15

B

16

C

17

D

13

Answer

17

Explanation

Solution

Let z=x+iyz = x + iy.

  1. From the equation

    z4=z8|z-4| = |z-8|

    we have

    (x4)2+y2=(x8)2+y2.\sqrt{(x-4)^2+y^2} = \sqrt{(x-8)^2+y^2}.

    Squaring both sides:

    (x4)2=(x8)2.(x-4)^2 = (x-8)^2.

    Expanding and simplifying:

    x28x+16=x216x+648x=48x=6.x^2 - 8x + 16 = x^2 - 16x + 64 \quad \Rightarrow \quad 8x = 48 \quad \Rightarrow \quad x = 6.
  2. Now substitute x=6x = 6 into

    3z12=5z8i3|z-12| = 5|z-8i|

    where z=6+iyz = 6 + iy.

    Compute the moduli:

    z12=6+iy12=6+iy=(6)2+y2=36+y2,|z - 12| = |6 + iy - 12| = |-6 + iy| = \sqrt{(-6)^2 + y^2} = \sqrt{36+y^2}, z8i=6+iy8i=6+i(y8)=62+(y8)2=36+(y8)2.|z - 8i| = |6 + iy - 8i| = |6 + i(y-8)| = \sqrt{6^2 + (y-8)^2} = \sqrt{36+(y-8)^2}.

    So the equation becomes:

    336+y2=536+(y8)2.3\sqrt{36+y^2} = 5\sqrt{36+(y-8)^2}.

    Squaring both sides:

    9(36+y2)=25[36+(y8)2].9(36+y^2)= 25[36+(y-8)^2].

    Expand (y8)2(y-8)^2:

    9(36+y2)=25(36+y216y+64).9(36+y^2) = 25(36+y^2-16y+64).

    Simplify:

    324+9y2=25y2400y+2500.324+9y^2 = 25y^2 - 400y + 2500.

    Rearranging:

    16y2400y+2176=0.16y^2 - 400y + 2176 = 0.

    Dividing by 16:

    y225y+136=0.y^2 - 25y + 136 = 0.

    Factorizing/discriminant method:

    y=25±6255442=25±812=25±92.y = \frac{25 \pm \sqrt{625-544}}{2} = \frac{25 \pm \sqrt{81}}{2} = \frac{25 \pm 9}{2}.

    Hence,

    y=17ory=8.y = 17 \quad \text{or} \quad y = 8.

Given the options (1) 15(1)\ 15, (2) 16(2)\ 16, (3) 17(3)\ 17, (4) 13(4)\ 13, the valid value is y=17y = 17.