Question
Question: If z is a complex number which simultaneously satisfies the equations $3|z - 12| = 5|z - 8i|$ and $|...
If z is a complex number which simultaneously satisfies the equations 3∣z−12∣=5∣z−8i∣ and ∣z−4∣=∣z−8∣, then Im(z) can be
A
15
B
16
C
17
D
13
Answer
17
Explanation
Solution
Let z=x+iy.
-
From the equation
∣z−4∣=∣z−8∣we have
(x−4)2+y2=(x−8)2+y2.Squaring both sides:
(x−4)2=(x−8)2.Expanding and simplifying:
x2−8x+16=x2−16x+64⇒8x=48⇒x=6. -
Now substitute x=6 into
3∣z−12∣=5∣z−8i∣where z=6+iy.
Compute the moduli:
∣z−12∣=∣6+iy−12∣=∣−6+iy∣=(−6)2+y2=36+y2, ∣z−8i∣=∣6+iy−8i∣=∣6+i(y−8)∣=62+(y−8)2=36+(y−8)2.So the equation becomes:
336+y2=536+(y−8)2.Squaring both sides:
9(36+y2)=25[36+(y−8)2].Expand (y−8)2:
9(36+y2)=25(36+y2−16y+64).Simplify:
324+9y2=25y2−400y+2500.Rearranging:
16y2−400y+2176=0.Dividing by 16:
y2−25y+136=0.Factorizing/discriminant method:
y=225±625−544=225±81=225±9.Hence,
y=17ory=8.
Given the options (1) 15, (2) 16, (3) 17, (4) 13, the valid value is y=17.