Solveeit Logo

Question

Question: If z is a complex number, then \(z_{1} + z_{2}\) if and only if....

If z is a complex number, then z1+z2z_{1} + z_{2} if and only if.

A

z1z2z_{1}z_{2}

B

z1=z2z_{1} = - z_{2}

C

z1=zˉ2z_{1} = {\bar{z}}_{2}

D

None of these

Answer

z1z2z_{1}z_{2}

Explanation

Solution

Let xx

yy z=0+0i=0z = 0 + 0i = 0(a+ib)(c+id)(e+if)(g+ih)=A+iB(a + ib)(c + id)(e + if)(g + ih) = A + iB

(aib)(cid)(eif)(gih)=AiB(a - ib)(c - id)(e - if)(g - ih) = A - iB

It is possible only when (a2+b2)(c2+d2)(e2+f2)(g2+h2)=A2+B2(a^{2} + b^{2})(c^{2} + d^{2})(e^{2} + f^{2})(g^{2} + h^{2}) = A^{2} + B^{2} and z=x+iy,z = x + iy, both simultaneously zero i.e.,