Solveeit Logo

Question

Mathematics Question on Algebra of Complex Numbers

If zz is a complex number, then the number of common roots of the equation z1985+z100+1=0z^{1985} + z^{100} + 1 = 0 and z3+2z2+2z+1=0z^3 + 2z^2 + 2z + 1 = 0, is equal to:

A

1

B

0

C

3

D

4

Answer

0

Explanation

Solution

Solve z2+z+1=0z^2 + z + 1 = 0: The roots are the non-real cube roots of unity:

z=ωandz=ω2,z = \omega \quad \text{and} \quad z = \omega^2,

where ω=e2πi/3\omega = e^{2\pi i/3} and ω2=e2πi/3\omega^2 = e^{-2\pi i/3}. These roots satisfy ω3=1\omega^3 = 1 and ω2+ω+1=0\omega^2 + \omega + 1 = 0.

Check if ω\omega and ω2\omega^2 satisfy z1985+z100+1=0z^{1985} + z^{100} + 1 = 0: For z=ωz = \omega:

ω1985=ω,ω100=ω.\omega^{1985} = \omega, \quad \omega^{100} = \omega.

Substituting into z1985+z100+1=0z^{1985} + z^{100} + 1 = 0:

ω+ω+1=2ω+10.\omega + \omega + 1 = 2\omega + 1 \neq 0.

For z=ω2z = \omega^2:

(ω2)1985=ω2,(ω2)100=ω2.(\omega^2)^{1985} = \omega^2, \quad (\omega^2)^{100} = \omega^2.

Substituting into z1985+z100+1=0z^{1985} + z^{100} + 1 = 0:

ω2+ω2+1=2ω2+10.\omega^2 + \omega^2 + 1 = 2\omega^2 + 1 \neq 0.

Conclusion: Neither ω\omega nor ω2\omega^2 satisfies both equations. Therefore, there are no common roots.