Solveeit Logo

Question

Mathematics Question on complex numbers

If zz is a complex number such that z1|z| \geq 1, then the minimum value of z+12(3+4i)\left| z + \frac{1}{2}(3 + 4i) \right|is:

A

52\frac{5}{2}

B

2

C

3

D

32\frac{3}{2}

E

32\frac{3}{2}

Answer

32\frac{3}{2}

Explanation

Solution

Given:

Minimize z+12(3+4i)subject to z1\text{Minimize } \left| z + \frac{1}{2}(3 + 4i) \right| \quad \text{subject to } |z| \geq 1

Let:

w=12(3+4i)w = \frac{1}{2}(3 + 4i) w=(32,2)w = \left(\frac{3}{2}, 2\right)

We need to find the minimum value of:

z+w=z+(32+2i)|z + w| = \left| z + \left(\frac{3}{2} + 2i\right) \right|

subject to z1|z| \geq 1.

The minimum distance from a point ww to any point zz on or outside the unit circle occurs when zz lies on the boundary of the circle.

Thus, we find the minimum distance between ww and the unit circle centered at the origin.

Distance Calculation

The distance of w=(32,2)w = \left(\frac{3}{2}, 2\right) from the origin is given by:

w=(32)2+22=94+4=254=52|w| = \sqrt{\left(\frac{3}{2}\right)^2 + 2^2} = \sqrt{\frac{9}{4} + 4} = \sqrt{\frac{25}{4}} = \frac{5}{2}

Since z1|z| \geq 1, the minimum value of z+w|z + w| is obtained when zz lies on the circle of radius 1, making the minimum value:

w1=521=32|w| - 1 = \frac{5}{2} - 1 = \frac{3}{2}

Conclusion: The minimum value of z+12(3+4i)\left| z + \frac{1}{2}(3 + 4i) \right| is 32\frac{3}{2}.