Solveeit Logo

Question

Question: If z is a complex number such that \(\left| z \right|=1\), prove that \(\dfrac{z-1}{z+1}\) is purely...

If z is a complex number such that z=1\left| z \right|=1, prove that z1z+1\dfrac{z-1}{z+1} is purely imaginary.
What will be your conclusion if z = 1?

Explanation

Solution

Hint: Use the fact that if a complex number z is purely imaginary, then z+zˉ=0z+\bar{z}=0. Use the fact that zzˉ=z2z\bar{z}={{\left| z \right|}^{2}} and a+b=aˉ+bˉ\overline{a+b}=\bar{a}+\bar{b} and (ab)=aˉbˉ\overline{\left( \dfrac{a}{b} \right)}=\dfrac{{\bar{a}}}{{\bar{b}}}. Consider the expression (z1z+1)+(z1z+1)\left( \dfrac{z-1}{z+1} \right)+\overline{\left( \dfrac{z-1}{z+1} \right)} and use the properties mentioned above to prove that the expression is equal to 0. Hence prove that the complex number z1z+1\dfrac{z-1}{z+1} is purely imaginary. Infer the result when z =1.

Complete step-by-step answer:
Let A=z1z+1A=\dfrac{z-1}{z+1}
We have A+Aˉ=(z1z+1)+(z1z+1)A+\bar{A}=\left( \dfrac{z-1}{z+1} \right)+\overline{\left( \dfrac{z-1}{z+1} \right)}
We know that (ab)=aˉbˉ\overline{\left( \dfrac{a}{b} \right)}=\dfrac{{\bar{a}}}{{\bar{b}}}
Using the above property of conjugate of complex numbers, we get
A+Aˉ=z1z+1+z1z+1A+\bar{A}=\dfrac{z-1}{z+1}+\dfrac{\overline{z-1}}{\overline{z+1}}
We know that a+b=aˉ+bˉ\overline{a+b}=\bar{a}+\bar{b}
Using the above property of conjugate of complex numbers, we get
A+Aˉ=z1z+1+zˉ1zˉ+1A+\bar{A}=\dfrac{z-1}{z+1}+\dfrac{\bar{z}-1}{\bar{z}+1}
Now, we know that zzˉ=z2=1z\bar{z}={{\left| z \right|}^{2}}=1
Dividing both sides by z, we get
zˉ=1z\bar{z}=\dfrac{1}{z}
Hence, we have
A+Aˉ=z1z+1+1z+11z1A+\bar{A}=\dfrac{z-1}{z+1}+\dfrac{\dfrac{1}{z}+1}{\dfrac{1}{z}-1}
Multiplying numerator and denominator of the second fraction by z, we get
A+Aˉ=z1z+1+1+z1z=z1z+1z+1z1=0A+\bar{A}=\dfrac{z-1}{z+1}+\dfrac{1+z}{1-z}=\dfrac{z-1}{z+1}-\dfrac{z+1}{z-1}=0
Hence, we have A+Aˉ=0A+\bar{A}=0
Hence, we have A is purely imaginary.
Hence, we have z1z+1\dfrac{z-1}{z+1} is purely imaginary.
When z = 1, we have z1z+1=0\dfrac{z-1}{z+1}=0, which is purely imaginary(0 is considered to be both purely imaginary as well as purely real).
Hence the statement holds true for z = 1.

Note: Alternative Solution:
Since z=1,\left| z \right|=1, we have z=eiθz={{e}^{i\theta }}
Now, we have z1z+1=eiθ1eiθ+1\dfrac{z-1}{z+1}=\dfrac{{{e}^{i\theta }}-1}{{{e}^{i\theta }}+1}
Multiplying the numerator and denominator of RHS by eiθ2{{e}^{-\dfrac{i\theta }{2}}}, we get
z1z+1=eiθ2eiθ2eiθ2+eiθ2\dfrac{z-1}{z+1}=\dfrac{{{e}^{\dfrac{i\theta }{2}}}-{{e}^{-\dfrac{i\theta }{2}}}}{{{e}^{\dfrac{i\theta }{2}}}+{{e}^{-\dfrac{i\theta }{2}}}}
We know that eix+eix=2cosx{{e}^{ix}}+{{e}^{-ix}}=2\cos x and eixeix=2isinx{{e}^{ix}}-{{e}^{-ix}}=2i\sin x
Hence, we have
z1z+1=2isin(θ2)2cos(θ2)=itan(θ2)\dfrac{z-1}{z+1}=\dfrac{2i\sin \left( \dfrac{\theta }{2} \right)}{2\cos \left( \dfrac{\theta }{2} \right)}=i\tan \left( \dfrac{\theta }{2} \right), which is purely imaginary.
Hence, we have
z1z+1\dfrac{z-1}{z+1} is purely imaginary.