Solveeit Logo

Question

Mathematics Question on complex numbers

If z3|z| \ge 3, then the least value of z+14\left|z+\frac{1}{4}\right| is

A

112\frac{11}{2}

B

114\frac{11}{4}

C

33

D

14\frac{1}{4}

Answer

114\frac{11}{4}

Explanation

Solution

z+14\left|z+\frac{1}{4}\right|
=z(14)z14= \left|z-\left(\frac{-1}{4}\right)\right| \ge \left|z\right|-\left|\frac{-1}{4}\right|
=(z)14314=114= \left|\left(-z\right)-\frac{1}{4}\right|\ge \left|3-\frac{1}{4}\right|= \frac{11}{4}
Hence, z+14114\left|z+\frac{1}{4}\right| \ge \frac{11}{4}