Solveeit Logo

Question

Question: If $z = \frac{1+i\sqrt{3}}{2i\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right)}$ then find $|z| \tex...

If z=1+i32i(cosπ3+isinπ3)z = \frac{1+i\sqrt{3}}{2i\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right)} then find z & amp(z)|z| \text{ \& } \text{amp}(z)

Answer

z=1|z| = 1 and amp(z)=π2\text{amp}(z) = -\frac{\pi}{2}

Explanation

Solution

  1. Convert numerator 1+i31+i\sqrt{3} to polar form: modulus 22, argument π3\frac{\pi}{3}.
  2. Convert denominator 2i(cosπ3+isinπ3)2i(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}) to polar form: 2i2i has modulus 22 and argument π2\frac{\pi}{2}. (cosπ3+isinπ3)(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}) has modulus 11 and argument π3\frac{\pi}{3}. The product has modulus 2×1=22 \times 1 = 2 and argument π2+π3=5π6\frac{\pi}{2} + \frac{\pi}{3} = \frac{5\pi}{6}.
  3. For z=NDz = \frac{N}{D}, z=ND=22=1|z| = \frac{|N|}{|D|} = \frac{2}{2} = 1.
  4. amp(z)=arg(N)arg(D)=π35π6=π2\text{amp}(z) = \arg(N) - \arg(D) = \frac{\pi}{3} - \frac{5\pi}{6} = -\frac{\pi}{2}.