Question
Question: If $z = \frac{1+i\sqrt{3}}{2i\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right)}$ then find $|z| \tex...
If z=2i(cos3π+isin3π)1+i3 then find ∣z∣ & amp(z)

Answer
∣z∣=1 and amp(z)=−2π
Explanation
Solution
- Convert numerator 1+i3 to polar form: modulus 2, argument 3π.
- Convert denominator 2i(cos3π+isin3π) to polar form: 2i has modulus 2 and argument 2π. (cos3π+isin3π) has modulus 1 and argument 3π. The product has modulus 2×1=2 and argument 2π+3π=65π.
- For z=DN, ∣z∣=∣D∣∣N∣=22=1.
- amp(z)=arg(N)−arg(D)=3π−65π=−2π.