Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If Z=(3+i)3(3i+4)2(8+6i)2Z = \frac {(\sqrt {3}+ i)^3 (3i+4)^2}{{(8+6i)^2}} then Z|Z| is equal to

A

0

B

1

C

2

D

3

Answer

2

Explanation

Solution

Z = (3+1)2(3i+4)2(8+6i)2\frac{(√3 + 1)^2(3i+4)^2 }{(8+6i)^2} ,

Then using identity |a+ib| = √a2 +b2

and Z1Z2Z3=Z!Z2Z3\frac{|Z_1Z_2|}{|Z_3|}=\frac{|Z_!||Z_2|}{|Z_3|}

Therefore,

|Z| = (3+1)2(3i+4)2(8+6i)2|\frac{(√3 + 1)^2(3i+4)^2 }{(8+6i)^2}|

= (3+1)2(3i+4)2(8+6i)2\frac{|(√3 + 1)^2||(3i+4)^2| }{(8+6i)^2}

= 23.53102\frac{2^3.5^3}{10^2}

= 2