Solveeit Logo

Question

Physics Question on Units and measurement

If Z=A4B1/3CD3/2Z=\frac{A^{4}\,B^{1/3}}{CD^{3/2}}. and ΔA\Delta A, ΔB\Delta B, ΔC\Delta C, and ΔD\Delta D are their absolute errors in AA, BB, CC and DD respectively. The relative error in ZZ is

A

ΔZZ=4ΔAA+13ΔBB+ΔCC+32ΔDD\frac{\Delta Z}{Z}=4 \frac{\Delta A}{A}+\frac{1}{3} \frac{\Delta B}{B}+\frac{\Delta C}{C}+\frac{3}{2} \frac{\Delta D}{D}

B

ΔZZ=4ΔAA+13ΔBBΔCC32ΔDD\frac{\Delta Z}{Z}=4 \frac{\Delta A}{A}+\frac{1}{3} \frac{\Delta B}{B}-\frac{\Delta C}{C}-\frac{3}{2} \frac{\Delta D}{D}

C

ΔZZ=4ΔAA+13ΔBB+ΔCC32ΔDD\frac{\Delta Z}{Z}=4 \frac{\Delta A}{A}+\frac{1}{3} \frac{\Delta B}{B}+\frac{\Delta C}{C}-\frac{3}{2} \frac{\Delta D}{D}

D

ΔZZ=4ΔAA+13ΔBBΔCC+32ΔDD\frac{\Delta Z}{Z}=4 \frac{\Delta A}{A}+\frac{1}{3} \frac{\Delta B}{B}-\frac{\Delta C}{C}+\frac{3}{2} \frac{\Delta D}{D}

Answer

ΔZZ=4ΔAA+13ΔBB+ΔCC+32ΔDD\frac{\Delta Z}{Z}=4 \frac{\Delta A}{A}+\frac{1}{3} \frac{\Delta B}{B}+\frac{\Delta C}{C}+\frac{3}{2} \frac{\Delta D}{D}

Explanation

Solution

Z=A4B1/3CD3/2Z=\frac{A^{4}\,B^{1/3}}{CD^{3/2}}. The relative error in ZZ is given by ΔZZ=4ΔAA+13ΔBB+ΔCC+32ΔDD\frac{\Delta Z}{Z}=4 \frac{\Delta A}{A}+\frac{1}{3} \frac{\Delta B}{B}+\frac{\Delta C}{C}+\frac{3}{2} \frac{\Delta D}{D}