Solveeit Logo

Question

Mathematics Question on argand plane

If z=1i31+i3z=\frac{1-i \sqrt{3}}{1+i \sqrt{3}}, then arg(z)\arg (z) is

A

6060^{\circ}

B

120120^{\circ}

C

240240^{\circ}

D

300300^{\circ}

Answer

240240^{\circ}

Explanation

Solution

z=(1i31+i3)z = \left(\frac{1-i\sqrt{3}}{1+i\sqrt{3}}\right)
z=1i31+i3×1i31i3\Rightarrow z = \frac{1-i\sqrt{3}}{1+i\sqrt{3}} \times\frac{1- i \sqrt{3}}{1-i\sqrt{3}}
z=1323i1+3=223i4\Rightarrow z = \frac{1-3-2\sqrt{3}i}{1+3} = \frac{-2 -2\sqrt{3}i}{4}
z=1232i\Rightarrow z = - \frac{1}{2} - \frac{\sqrt{3}}{2} i
z=cos240isin240\Rightarrow \sqrt{ z = \cos240^{\circ} } -i\sin240^{\circ}
Thus, arg (z)=240\left(z\right) =240^{\circ}