Solveeit Logo

Question

Mathematics Question on complex numbers

If z=122iz = \frac{1}{2} - 2i, is such that z+1=αz+β(1+i)|z + 1| = \alpha z + \beta (1 + i), i=1i = \sqrt{-1} and α,βR\alpha, \beta \in \mathbb{R}, then α+β\alpha + \beta is equal to:

A

-4

B

3

C

2

D

-1

Answer

3

Explanation

Solution

We are given:
z=122iz = \frac{1}{2} - 2i
andz+1=αz+β(1+i)|z + 1| = \alpha z + \beta(1 + i)

First, we calculate z+1|z + 1|:
z+1=122i+1=322i|z + 1| = \left| \frac{1}{2} - 2i + 1 \right| = \left| \frac{3}{2} - 2i \right|
Using the modulus formula for complex numbers:

322i=(32)2+(2)2=94+4=94+164=254=52\left| \frac{3}{2} - 2i \right| = \sqrt{\left( \frac{3}{2} \right)^2 + (-2)^2} = \sqrt{\frac{9}{4} + 4} = \sqrt{\frac{9}{4} + \frac{16}{4}} = \sqrt{\frac{25}{4}} = \frac{5}{2}
Now, substituting into the equation:
52=α(122i)+β(1+i)\frac{5}{2} = \alpha \left( \frac{1}{2} - 2i \right) + \beta(1 + i)

Expanding both sides:
52=α22αi+β+βi\frac{5}{2} = \frac{\alpha}{2} - 2\alpha i + \beta + \beta i

Equating real and imaginary parts:

Real part: α2+β=52\frac{\alpha}{2} + \beta = \frac{5}{2}

Imaginary part: 2α+β=0-2\alpha + \beta = 0

From the imaginary part:
β=2α\beta = 2\alpha
Substituting into the real part:

α2+2α=52\frac{\alpha}{2} + 2\alpha = \frac{5}{2}

5α2=52\frac{5\alpha}{2} = \frac{5}{2}
α=1\alpha = 1
Substituting α=1\alpha = 1 into β=2α\beta = 2\alpha:
β=2\beta = 2
Thus:
α+β=1+2=3\alpha + \beta = 1 + 2 = 3
So, the correct answer is: 3\boxed{3}