Solveeit Logo

Question

Question: If \(z=\cos \theta +\sin \theta \) , then the value of \({{z}^{n}}+\dfrac{1}{{{z}^{n}}}\) will be: ...

If z=cosθ+sinθz=\cos \theta +\sin \theta , then the value of zn+1zn{{z}^{n}}+\dfrac{1}{{{z}^{n}}} will be:
a)sin2nθ\sin 2n\theta
b)2sinnθ2\sin n\theta
c)2cosnθ2\cos n\theta
d)cos2nθ\cos 2n\theta

Explanation

Solution

Hint: Consider the fact that eiθ{{e}^{i\theta }} can also be written as cosθ+isinθ\cos \theta +i\sin \theta .
Then z=eiθz={{e}^{i\theta }} which can also be written as zn=einθ,zn=eiθ{{z}^{n}}={{e}^{in\theta }},{{z}^{-n}}={{e}^{-i\theta }} and then use the form that einθ{{e}^{in\theta }} can be written as cos(nθ)+isin(nθ),einθ\cos \left( n\theta \right)+i\sin \left( n\theta \right),{{e}^{-in\theta }} can be written as cosnisinθ\cos n-i\sin \theta .

Complete step-by-step answer:
After that add them and get the desired result.

In the question we are given the value of function z which is written as,
z=cosθ+isinθz=\cos \theta +i\sin \theta
As we know that eiθ=cosθ+isinθ,eiθ=cosθisinθ{{e}^{i\theta }}=\cos \theta +i\sin \theta ,{{e}^{-i\theta }}=\cos \theta -i\sin \theta we will first prove it use it in the solution,
By using Taylor’s series we can write sinθ\sin \theta as,
sinθ=θθ33!+θ55!θ77!+...........\sin \theta =\theta -\dfrac{{{\theta }^{3}}}{3!}+\dfrac{{{\theta }^{5}}}{5!}-\dfrac{{{\theta }^{7}}}{7!}+...........
By using Taylor’s series we can write cosθ\cos \theta as,
cosθ=1θ22!+θ44!θ66!+...........\cos \theta =1-\dfrac{{{\theta }^{2}}}{2!}+\dfrac{{{\theta }^{4}}}{4!}-\dfrac{{{\theta }^{6}}}{6!}+...........
By using Taylor’s series we can write eθ{{e}^{\theta }} as ,
eθ=1+θ+θ22!+θ33!+...........{{e}^{\theta }}=1+\theta +\dfrac{{{\theta }^{2}}}{2!}+\dfrac{{{\theta }^{3}}}{3!}+...........
By using Taylor’s series we can write eθ{{e}^{-\theta }} as,
eθ=1+(θ)+(θ)22!+(θ)33!+...........{{e}^{-\theta }}=1+\left( -\theta \right)+\dfrac{{{\left( -\theta \right)}^{2}}}{2!}+\dfrac{{{\left( -\theta \right)}^{3}}}{3!}+...........
eθ=1θ+θ22!θ33!+...........{{e}^{-\theta }}=1-\theta +\dfrac{{{\theta }^{2}}}{2!}-\dfrac{{{\theta }^{3}}}{3!}+...........
In the series of eθ{{e}^{\theta }} we will just replace θ\theta by iθi\theta then we get,
eiθ=1+(iθ)+(iθ)22!+(iθ)33!+...........{{e}^{i\theta }}=1+\left( i\theta \right)+\dfrac{{{\left( i\theta \right)}^{2}}}{2!}+\dfrac{{{\left( i\theta \right)}^{3}}}{3!}+...........
Which can be simplified and written by using fact that
i2=1,i3=i.{{i}^{2}}=-1,{{i}^{3}}=-i.
So, we get
eiθ=1+iθθ22!θ33!...........{{e}^{i\theta }}=1+i\theta -\dfrac{{{\theta }^{2}}}{2!}-\dfrac{{{\theta }^{3}}}{3!}...........
Now separating terms which are with ‘i’ and which are without ‘i’ so we get,
eiθ=(1θ22!+........)+i(θθ33!+........){{e}^{i\theta }}=\left( 1-\dfrac{{{\theta }^{2}}}{2!}+........ \right)+i\left( \theta -\dfrac{{{\theta }^{3}}}{3!}+........ \right)
Now we found that,
cosθ=1θ22!+......... sinθ=θθ33!+......... \begin{aligned} & \cos \theta =1-\dfrac{{{\theta }^{2}}}{2!}+......... \\\ & sin\theta =\theta -\dfrac{{{\theta }^{3}}}{3!}+......... \\\ \end{aligned}
We get,
eiθ=cosθ+isinθ{{e}^{i\theta }}=\cos \theta +i\sin \theta
In the question we were given,
z=cosθ+isinθz=\cos \theta +i\sin \theta
So we can also write
z=eiθz={{e}^{i\theta }}
So if,z=eiθz={{e}^{i\theta }} then zn=einθ{{z}^{n}}={{e}^{in\theta }} .
einθ=cosθ+isin(nθ){{e}^{in\theta }}=\cos \theta +i\sin \left( n\theta \right)
Then we can say,
zn=cosθ+isinθ(nθ){{z}^{n}}=\cos \theta +i\sin \theta \left( n\theta \right)
Now if z=cosθ+isinθz=\cos \theta +i\sin \theta then,
1z=1cosθ+isinθ\dfrac{1}{z}=\dfrac{1}{\cos \theta +i\sin \theta }
Now rationalizing or multiplying cosθisinθ\cos \theta -i\sin \theta to numerator and denominator we get,
1z=cosθisinθ(cosθ+isinθ)(cosθisinθ)\dfrac{1}{z}=\dfrac{\cos \theta -i\sin \theta }{\left( \cos \theta +i\sin \theta \right)\left( \cos \theta -i\sin \theta \right)}
Now by using formula
(a+b)(ab)=a2b2\left(a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}
We will simplify it as,
1z=cosθisinθcos2θi2sinθ\dfrac{1}{z}=\dfrac{\cos \theta -i\sin \theta }{{{\cos }^{2}}\theta -{{i}^{2}}\sin \theta }
The value of i2=1{{i}^{2}}=-1 so we can write it as,
1z=cosθisinθcos2θ+sin2θ\dfrac{1}{z}=\dfrac{\cos \theta -i\sin \theta }{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta }
Now by using identity sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 we get,
1z=cosθisinθ\dfrac{1}{z}=\cos \theta -i\sin \theta
We can write it as,
1z=cos(θ)+isin(θ)\dfrac{1}{z}=\cos \left( -\theta \right)+i\sin \left( -\theta \right)
So if cosθ+sinθ=eiθ\cos \theta +\sin \theta ={{e}^{i\theta }}
Then we can say,
cos(θ)+i(sin(θ))=ei(θ)\cos \left( -\theta \right)+i\left( \sin \left( -\theta \right) \right)={{e}^{i\left( -\theta \right)}}
So,
cosθ+isinθ=eiθ 1z=eiθ \begin{aligned} & \cos \theta +i\sin \theta ={{e}^{-i\theta }} \\\ & \dfrac{1}{z}={{e}^{-i\theta }} \\\ \end{aligned}
Then we can say,
1zn=einθ\dfrac{1}{{{z}^{n}}}={{e}^{-in\theta }}
We can express einθ{{e}^{-in\theta }} as,
einθ=cos(nθ)+isin(nθ) =cos(nθ)isin(nθ) \begin{aligned} & {{e}^{-in\theta }}=\cos \left( -n\theta \right)+i\sin \left( -n\theta \right) \\\ & =\cos \left( n\theta \right)-i\sin \left( n\theta \right) \\\ \end{aligned}
Hence we can tell,
1z=cosnθisinnθ\dfrac{1}{z}=\cos n\theta -i\sin n\theta
We have been asked to find zn+1zn{{z}^{n}}+\dfrac{1}{{{z}^{n}}} so,
zn+1zn=cos(nθ)+isin(nθ)+cosnθisin(nθ) zn+1zn=2cosθ \begin{aligned} & {{z}^{n}}+\dfrac{1}{{{z}^{n}}}=\cos \left( n\theta \right)+i\sin \left( n\theta \right)+\cos n\theta -i\sin \left( n\theta \right) \\\ & {{z}^{n}}+\dfrac{1}{{{z}^{n}}}=2\cos \theta \\\ \end{aligned}
The correct option is ‘c’.

Note: Students generally have confusion how to find zn{{z}^{n}} if z=cosθ+sinθz=\cos \theta +\sin \theta as they forget that cosθ+isinθ\cos \theta +i\sin \theta can be represented as eiθ,einθ{{e}^{i\theta }},{{e}^{in\theta }} can also be represented as cosnθ+isinnθ\cos n\theta +i\sin n\theta that is why they should well versed with all the forms to use them easily.