Question
Question: If z be any complex number (z ¹ 0), then arg \(\left( \frac{z - i}{z + i} \right)\) = \(\frac{\pi}{2...
If z be any complex number (z ¹ 0), then arg (z+iz−i) = 2π represents the curve –
A
|z| = I
B
|z| = 1; Re (z) > 0
C
|z| = 1 ; Re (z) < 0
D
None of these
Answer
|z| = 1 ; Re (z) < 0
Explanation
Solution
Sol. arg Z = 2π
Ž Z = P.I. = ri (r + ive)
\ z+iz−i = ir
L.H.S. = (z+i)(z+i)(z−i)(z+i)
= ∣z+i∣2(z−i)(zˉ+iˉ)
= +iveR(z−i)(zˉ−i)=+iveRzzˉ+i2−i(z+zˉ)
= +iveR(x2+y2−1)−i.(2x) = ir
\ Real part = 0 Ž x2 + y2 = 1 or |z| = 1
Imaginary part – 2x = R . r = + ive
\ x < 0 i.e., Re (z) < 0
Both imply (3).