Solveeit Logo

Question

Question: If \(z\) and \(z.\overline{z} = 0\) are any two complex numbers then \(z = 0\) \({Re}(z) = 0\) is eq...

If zz and z.z=0z.\overline{z} = 0 are any two complex numbers then z=0z = 0 Re(z)=0{Re}(z) = 0 is equal to.

A

Im(z)=0{Im}(z) = 0

B

(a+ib)(c+id)(e+if)(g+ih)(a + ib)(c + id)(e + if)(g + ih)

C

=A+iB,= A + iB,

D

(a2+b2)(c2+d2)(e2+f2)(g2+h2)(a^{2} + b^{2})(c^{2} + d^{2})(e^{2} + f^{2})(g^{2} + h^{2})

Answer

(a+ib)(c+id)(e+if)(g+ih)(a + ib)(c + id)(e + if)(g + ih)

Explanation

Solution

z=1+iy1iy=1+iy1iy×1+iy1+iy=(1y2)+2iy1+y2\mathbf{z =}\frac{\mathbf{1 + iy}}{\mathbf{1}\mathbf{-}\mathbf{iy}}\mathbf{=}\frac{\mathbf{1 + iy}}{\mathbf{1}\mathbf{-}\mathbf{iy}}\mathbf{\times}\frac{\mathbf{1 + iy}}{\mathbf{1 + iy}}\mathbf{=}\frac{\mathbf{(1}\mathbf{-}\mathbf{y}^{\mathbf{2}}\mathbf{) + 2iy}}{\mathbf{1 +}\mathbf{y}^{\mathbf{2}}}

\therefore

z=11+y2(1y2)2+4y2=1+y21+y2=1|z| = \frac{1}{1 + y^{2}}\sqrt{(1 - y^{2})^{2} + 4y^{2}} = \frac{1 + y^{2}}{1 + y^{2}} = 1