Solveeit Logo

Question

Question: If z and w are two complex numbers such that $|zw| = 1$ and $\arg(z) – \arg(w) = \frac{\pi}{2}$, the...

If z and w are two complex numbers such that zw=1|zw| = 1 and arg(z)arg(w)=π2\arg(z) – \arg(w) = \frac{\pi}{2}, then :

A

zw=1i2z\overline{w} = \frac{1-i}{\sqrt{2}}

B

zw=iz\overline{w} = i

C

zw=1+i2z\overline{w} = \frac{-1+i}{\sqrt{2}}

D

zw=iz\overline{w} = -i

Answer

zw=iz\overline{w} = i

Explanation

Solution

Given zw=1|zw|=1 and arg(z)arg(w)=π2\arg(z) - \arg(w) = \frac{\pi}{2}. Let z=zeiθ1z = |z|e^{i\theta_1} and w=weiθ2w = |w|e^{i\theta_2}, where θ1=arg(z)\theta_1 = \arg(z) and θ2=arg(w)\theta_2 = \arg(w). From zw=1|zw|=1, we have zw=1|z||w|=1. The condition on arguments is θ1θ2=π2\theta_1 - \theta_2 = \frac{\pi}{2}.

We need to find zwz\overline{w}. The conjugate of ww is w=weiθ2\overline{w} = |w|e^{-i\theta_2}.

Now, we compute the product zwz\overline{w}: zw=(zeiθ1)×(weiθ2)z\overline{w} = (|z|e^{i\theta_1}) \times (|w|e^{-i\theta_2}) zw=zw×eiθ1eiθ2z\overline{w} = |z||w| \times e^{i\theta_1}e^{-i\theta_2} zw=zwei(θ1θ2)z\overline{w} = |z||w| e^{i(\theta_1 - \theta_2)}

Substitute the given values: zw=1|z||w|=1 and θ1θ2=π2\theta_1 - \theta_2 = \frac{\pi}{2}. zw=1×eiπ2z\overline{w} = 1 \times e^{i\frac{\pi}{2}} zw=eiπ2z\overline{w} = e^{i\frac{\pi}{2}}

Using Euler's formula, eiϕ=cosϕ+isinϕe^{i\phi} = \cos\phi + i\sin\phi: zw=cos(π2)+isin(π2)z\overline{w} = \cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right) zw=0+i(1)z\overline{w} = 0 + i(1) zw=iz\overline{w} = i