Question
Question: If z and w are two complex numbers such that $|zw| = 1$ and $\arg(z) – \arg(w) = \frac{\pi}{2}$, the...
If z and w are two complex numbers such that ∣zw∣=1 and arg(z)–arg(w)=2π, then :

A
zw=21−i
B
zw=i
C
zw=2−1+i
D
zw=−i
Answer
zw=i
Explanation
Solution
Given ∣zw∣=1 and arg(z)−arg(w)=2π. Let z=∣z∣eiθ1 and w=∣w∣eiθ2, where θ1=arg(z) and θ2=arg(w). From ∣zw∣=1, we have ∣z∣∣w∣=1. The condition on arguments is θ1−θ2=2π.
We need to find zw. The conjugate of w is w=∣w∣e−iθ2.
Now, we compute the product zw: zw=(∣z∣eiθ1)×(∣w∣e−iθ2) zw=∣z∣∣w∣×eiθ1e−iθ2 zw=∣z∣∣w∣ei(θ1−θ2)
Substitute the given values: ∣z∣∣w∣=1 and θ1−θ2=2π. zw=1×ei2π zw=ei2π
Using Euler's formula, eiϕ=cosϕ+isinϕ: zw=cos(2π)+isin(2π) zw=0+i(1) zw=i