Solveeit Logo

Question

Question: If z and \(\omega\) are to non-zero complex numbers such that \(|z\omega| = 1\) and arg (z) – arg\((...

If z and ω\omega are to non-zero complex numbers such that zω=1|z\omega| = 1 and arg (z) – arg(ω)=π2,(\omega) = \frac{\pi}{2}, then zˉω\bar{z}\omega is equal to

A

1

B

– 1

C

I

D

– i

Answer

– i

Explanation

Solution

Sol.zω=1|z|\omega| = 1 .....(i) and arg(zω)=π2\left( \frac{z}{\omega} \right) = \frac{\pi}{2}

zω=i\frac{z}{\omega} = izω=1\left| \frac{z}{\omega} \right| = 1 .....(ii)

From equation (i) and (ii),

z=ω=1|z| = |\omega| = 1and zω+zˉωˉ=0;zωˉ+zˉω=0\frac{z}{\omega} + \frac{\bar{z}}{\bar{\omega}} = 0;z\bar{\omega} + \bar{z}\omega = 0

zˉω=zωˉ=zωωˉω\bar{z}\omega = - z\bar{\omega} = \frac{- z}{\omega}\bar{\omega}\omegazˉω=iω2=i.\bar{z}\omega = - i|\omega|^{2} = - i.