Solveeit Logo

Question

Question: If \|z –25i\| £ 15, then maximum arg (z) – minimum arg (z) \| equals-...

If |z –25i| £ 15, then maximum arg (z) – minimum arg (z) | equals-

A

π2\frac{\pi}{2}+ cos–1(35)\left( \frac{3}{5} \right)

B

sin–1(35)\left( \frac{3}{5} \right)– cos–1 (35)\left( \frac{3}{5} \right)

C

2 cos–1 (45)\left( \frac{4}{5} \right)

D

2 cos–1(35)\left( \frac{3}{5} \right)

Answer

2 cos–1 (45)\left( \frac{4}{5} \right)

Explanation

Solution

Sol. |z –25i| £ 15

OP = OC2 – CP2 = 20

sin q =2025\frac{20}{25}= 45\frac{4}{5}, cos q = 1525\frac{15}{25}= 35\frac{3}{5}

Minimum amplitude of z is q = sin–1 45\frac{4}{5}

maximum amplitude of z is p – q = p – sin–1 45\frac{4}{5}

So |max amp. (z) – min. amp. z | = p – q – q

= p – 2q = 2(π2θ)\left( \frac{\pi}{2} - \theta \right)= 2[π2sin145)\left\lbrack \frac{\pi}{2} - \sin^{- 1}\frac{4}{5} \right)= 2 cos–1 45\frac{4}{5}