Solveeit Logo

Question

Question: If \| z – 25i \| ≤ 15, then \| maximum arg (z) – minimum arg (z) \| equals –...

If | z – 25i | ≤ 15, then | maximum arg (z) – minimum arg (z) | equals –

A

π2+cos1(35)\frac{\pi}{2} + \cos^{- 1}\left( \frac{3}{5} \right)

B

sin1(35)cos1(35)\sin^{- 1}\left( \frac{3}{5} \right) - \cos^{- 1}\left( \frac{3}{5} \right)

C

2cos1(45)2\cos^{- 1}\left( \frac{4}{5} \right)

D

2cos1(35)2\cos^{- 1}\left( \frac{3}{5} \right)

Answer

2cos1(45)2\cos^{- 1}\left( \frac{4}{5} \right)

Explanation

Solution

Sol.

min arg (z) = q = cos–1(1525)\left( \frac{15}{25} \right)= cos–1 (35)\left( \frac{3}{5} \right)

max arg (z) = p – q = p – cos–1(35)\left( \frac{3}{5} \right)

| max arg z – min arg z | = | p – 2q |

= | p – 2 cos–1(35)\left( \frac{3}{5} \right)|