Solveeit Logo

Question

Mathematics Question on complex numbers

If z 2 + z + 1 = 0,
zCz ∈ C, then n=115(zn+(1)n1zn)2\left| \sum_{n=1}^{15} \left( z_n + (-1)^n \frac{1}{z_n} \right)^2 \right|
is equal to ________.

Answer

The correct answer is 2
z 2 + z + 1 = 0
⇒ ω or ω2
∵$$\left| \sum_{n=1}^{15} \left( z_n + (-1)^n \frac{1}{z_n} \right)^2 \right|
=n=115z2n+n=115z2n+2.n=115(1)n\left| \sum_{n=1}^{15} z^{2n} + \sum_{n=1}^{15} z^{-2n} + 2.\sum_{n=1}^{15} (-1)^n \right|
= |0 + 0 – 2|
= 2