Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If z1z_{1}, z2z_{2}, z3z_{3} are any three complex numbers such that z1=z2=z3=1z1+1z2+1z3=1\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}+\frac{1}{z_{3}}\right|=1, then find the value of z1+z2+z3\left|z_{1}+z_{2}+z_{3}\right|.

A

11

B

22

C

33

D

44

Answer

11

Explanation

Solution

z1=z2=z3=1\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=1 z12=z22=z32=1\Rightarrow\, \left|z_{1}\right|^{2}=\left|z_{2}\right|^{2}=\left|z_{3}\right|^{2}=1 z1zˉ1=z2zˉ2=z3zˉ3=1\Rightarrow\, z_{1} \bar{z}_{1} =z_{2} \bar{z}_{2}=z_{3} \bar{z}_{3}=1 zˉ1=1z1\Rightarrow\, \bar{z}_{1}=\frac{1}{z_{1}}, zˉ2=1z2\bar{z}_{2}=\frac{1}{z_{2}}, zˉ3=1z3\bar{z}_{3}=\frac{1}{z_{3}} Given that, 1z1+1z2+1z3=1\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}+\frac{1}{z_{3}}\right|=1 zˉ1+zˉ2+zˉ3=1\Rightarrow\, \left|\bar{z}_{1}+\bar{z}_{2}+\bar{z}_{3}\right|=1 z1+z2+z3=1\Rightarrow\, \left|\overline{z_{1}+z_{2}+z_{3}}\right|=1 z1+z2+z3=1\Rightarrow\, \left|z_{1}+z_{2}+z_{3}\right|=1