Solveeit Logo

Question

Question: If \({z_1},{z_2},{z_3}\) are 3 distinct complex numbers such that \(\dfrac{3}{{\left| {{z_2} - {z_3}...

If z1,z2,z3{z_1},{z_2},{z_3} are 3 distinct complex numbers such that 3z2z3=4z3z1=5z1z2\dfrac{3}{{\left| {{z_2} - {z_3}} \right|}} = \dfrac{4}{{\left| {{z_3} - {z_1}} \right|}} = \dfrac{5}{{\left| {{z_1} - {z_2}} \right|}} then what is the value of 9z2z3+16z3z1+25z1z2\dfrac{9}{{{z_2} - {z_3}}} + \dfrac{{16}}{{{z_3} - {z_1}}} + \dfrac{{25}}{{{z_1} - {z_2}}}.
A. 0 B. 5 C. 5 D. 25  {\text{A}}{\text{. 0}} \\\ {\text{B}}{\text{. }}\sqrt 5 \\\ {\text{C}}{\text{. 5}} \\\ {\text{D}}{\text{. 25}} \\\

Explanation

Solution

Hint: Here, we will proceed by finding the values of (z2z3)\left( {{z_2} - {z_3}} \right), (z3z1)\left( {{z_3} - {z_1}} \right) and (z1z2)\left( {{z_1} - {z_2}} \right) from the given equation with the help of formulas like z2=z(z){\left| z \right|^2} = z\left( {\overline z } \right) where z is any complex number and zazb=zazb\overline {{z_a} - {z_b}} = \overline {{z_a}} - \overline {{z_b}} where za,zb{z_a},{z_b} are any two distinct complex numbers.

Complete step-by-step answer:

Given, for any three distinct complex numbers z1,z2,z3{z_1},{z_2},{z_3}
3z2z3=4z3z1=5z1z2=k(say) (1)\dfrac{3}{{\left| {{z_2} - {z_3}} \right|}} = \dfrac{4}{{\left| {{z_3} - {z_1}} \right|}} = \dfrac{5}{{\left| {{z_1} - {z_2}} \right|}} = k{\text{(say) }} \to {\text{(1)}}
By considering equation (1), we can write
3z2z3=k kz2z3=3  \dfrac{3}{{\left| {{z_2} - {z_3}} \right|}} = k \\\ \Rightarrow k\left| {{z_2} - {z_3}} \right| = 3 \\\
By squaring both sides of the above equation, we get
[kz2z3]2=32 k2z2z32=9 (2)  \Rightarrow {\left[ {k\left| {{z_2} - {z_3}} \right|} \right]^2} = {3^2} \\\ \Rightarrow {k^2}{\left| {{z_2} - {z_3}} \right|^2} = 9{\text{ }} \to {\text{(2)}} \\\
Again by considering equation (1), we can write
4z3z1=k kz3z1=4  \dfrac{4}{{\left| {{z_3} - {z_1}} \right|}} = k \\\ \Rightarrow k\left| {{z_3} - {z_1}} \right| = 4 \\\
By squaring both sides of the above equation, we get
[kz3z1]2=42 k2z3z12=16 (3)  \Rightarrow {\left[ {k\left| {{z_3} - {z_1}} \right|} \right]^2} = {4^2} \\\ \Rightarrow {k^2}{\left| {{z_3} - {z_1}} \right|^2} = 16{\text{ }} \to {\text{(3)}} \\\
Again by considering equation (1), we can write
5z1z2=k kz1z2=5  \dfrac{5}{{\left| {{z_1} - {z_2}} \right|}} = k \\\ \Rightarrow k\left| {{z_1} - {z_2}} \right| = 5 \\\
By squaring both sides of the above equation, we get
[kz1z2]2=52 k2z1z22=25 (4)  \Rightarrow {\left[ {k\left| {{z_1} - {z_2}} \right|} \right]^2} = {5^2} \\\ \Rightarrow {k^2}{\left| {{z_1} - {z_2}} \right|^2} = 25{\text{ }} \to {\text{(4)}} \\\
As we know that for any complex number z, the square of the magnitude of this complex number is equal to the product of this complex number with the conjugate of this complex number.
i.e., z2=z(z) (5){\left| z \right|^2} = z\left( {\overline z } \right){\text{ }} \to {\text{(5)}}
Using the formula given by equation (5) in equation (2), we get

k2(z2z3)(z2z3)=9 (z2z3)=9k2(z2z3) (6)  \Rightarrow {k^2}\left( {{z_2} - {z_3}} \right)\left( {\overline {{z_2} - {z_3}} } \right) = 9 \\\ \Rightarrow \left( {{z_2} - {z_3}} \right) = \dfrac{9}{{{k^2}\left( {\overline {{z_2} - {z_3}} } \right)}}{\text{ }} \to {\text{(6)}} \\\

Using the formula given by equation (5) in equation (3), we get

k2(z3z1)(z3z1)=16 (z3z1)=16k2(z3z1) (7)  \Rightarrow {k^2}\left( {{z_3} - {z_1}} \right)\left( {\overline {{z_3} - {z_1}} } \right) = 16 \\\ \Rightarrow \left( {{z_3} - {z_1}} \right) = \dfrac{{16}}{{{k^2}\left( {\overline {{z_3} - {z_1}} } \right)}}{\text{ }} \to {\text{(7)}} \\\

Using the formula given by equation (5) in equation (4), we get

k2(z1z2)(z1z2)=25 (z1z2)=25k2(z1z2) (8)  \Rightarrow {k^2}\left( {{z_1} - {z_2}} \right)\left( {\overline {{z_1} - {z_2}} } \right) = 25 \\\ \Rightarrow \left( {{z_1} - {z_2}} \right) = \dfrac{{25}}{{{k^2}\left( {\overline {{z_1} - {z_2}} } \right)}}{\text{ }} \to {\text{(8)}} \\\

For any two complex numbers za,zb{z_a},{z_b}, we can write
zazb=zazb (9)\overline {{z_a} - {z_b}} = \overline {{z_a}} - \overline {{z_b}} {\text{ }} \to {\text{(9)}}
Using the formula given by equation (9) in equation (6), we get
(z2z3)=9k2(z2z3) (10)\Rightarrow \left( {{z_2} - {z_3}} \right) = \dfrac{9}{{{k^2}\left( {\overline {{z_2}} - \overline {{z_3}} } \right)}}{\text{ }} \to {\text{(10)}}
Using the formula given by equation (9) in equation (7), we get
(z3z1)=16k2(z3z1) (11)\Rightarrow \left( {{z_3} - {z_1}} \right) = \dfrac{{16}}{{{k^2}\left( {\overline {{z_3}} - \overline {{z_1}} } \right)}}{\text{ }} \to {\text{(11)}}
Using the formula given by equation (9) in equation (8), we get
(z1z2)=25k2(z1z2) (12)\Rightarrow \left( {{z_1} - {z_2}} \right) = \dfrac{{25}}{{{k^2}\left( {\overline {{z_1}} - \overline {{z_2}} } \right)}}{\text{ }} \to {\text{(12)}}
Let x be the value of the expression which we have to evaluate
i.e., x=9z2z3+16z3z1+25z1z2x = \dfrac{9}{{{z_2} - {z_3}}} + \dfrac{{16}}{{{z_3} - {z_1}}} + \dfrac{{25}}{{{z_1} - {z_2}}}
By substituting equations (10), (11) and (12) in the above equation, we get
x=9[9k2(z2z3)]+16[16k2(z3z1) ]+25[25k2(z1z2)] x=9k2(z2z3)9+16k2(z3z1)16+25k2(z1z2)25 x=k2(z2z3)+k2(z3z1)+k2(z1z2) x=k2[z2z3+z3z1+z1z2] x=k2×0 x=0  \Rightarrow x = \dfrac{9}{{\left[ {\dfrac{9}{{{k^2}\left( {\overline {{z_2}} - \overline {{z_3}} } \right)}}} \right]}} + \dfrac{{16}}{{\left[ {\dfrac{{16}}{{{k^2}\left( {\overline {{z_3}} - \overline {{z_1}} } \right)}}{\text{ }}} \right]}} + \dfrac{{25}}{{\left[ {\dfrac{{25}}{{{k^2}\left( {\overline {{z_1}} - \overline {{z_2}} } \right)}}} \right]}} \\\ \Rightarrow x = \dfrac{{9{k^2}\left( {\overline {{z_2}} - \overline {{z_3}} } \right)}}{9} + \dfrac{{16{k^2}\left( {\overline {{z_3}} - \overline {{z_1}} } \right)}}{{16}} + \dfrac{{25{k^2}\left( {\overline {{z_1}} - \overline {{z_2}} } \right)}}{{25}} \\\ \Rightarrow x = {k^2}\left( {\overline {{z_2}} - \overline {{z_3}} } \right) + {k^2}\left( {\overline {{z_3}} - \overline {{z_1}} } \right) + {k^2}\left( {\overline {{z_1}} - \overline {{z_2}} } \right) \\\ \Rightarrow x = {k^2}\left[ {\overline {{z_2}} - \overline {{z_3}} + \overline {{z_3}} - \overline {{z_1}} + \overline {{z_1}} - \overline {{z_2}} } \right] \\\ \Rightarrow x = {k^2} \times 0 \\\ \Rightarrow x = 0 \\\
Therefore, the value of the expression 9z2z3+16z3z1+25z1z2\dfrac{9}{{{z_2} - {z_3}}} + \dfrac{{16}}{{{z_3} - {z_1}}} + \dfrac{{25}}{{{z_1} - {z_2}}} is 0.
Hence, option A is correct.

Note: Any complex number z can be represented as z=a+ibz = a + ib where a is the real part of the complex number z, b is the imaginary part of the complex number z and i=1i = \sqrt { - 1} . All the real numbers are imaginary numbers because any real number r can be represented as r=r+i(0)r = r + i\left( 0 \right) where the real part is the number itself and the imaginary part is 0.