Solveeit Logo

Question

Question: If \({{z}_{1}},{{z}_{2}}\in C\) , \(z_{1}^{2}+z_{2}^{2}\in R\) , \({{z}_{1}}(z_{1}^{2}-3z_{2}^{2})=2...

If z1,z2C{{z}_{1}},{{z}_{2}}\in C , z12+z22Rz_{1}^{2}+z_{2}^{2}\in R , z1(z123z22)=2{{z}_{1}}(z_{1}^{2}-3z_{2}^{2})=2 and z2(3z12z22)=11{{z}_{2}}(3z_{1}^{2}-z_{2}^{2})=11, then the z12+z22=z_{1}^{2}+z_{2}^{2}=
A)5A)5
B)6B)6
C)7C)7
D)8D)8

Explanation

Solution

Hint : To solve this question we need to have knowledge about complex numbers and quadratic equations. In this question we will apply the algebra of complex numbers to find the value of the unknown. We will firstly multiply the second equation to iota (ii) making the second equation a complex number. Then we will add and subtract the equation finding the value of z12+z22z_{1}^{2}+z_{2}^{2}.

Complete step-by-step solution:
The question ask us to find the value of z12+z22z_{1}^{2}+z_{2}^{2} if z1,z2{{z}_{1}},{{z}_{2}} is given as the complex number and z12+z22z_{1}^{2}+z_{2}^{2} belongs to real number. The conditions which will help us in calculating the unknown is given as z1(z123z22)=2{{z}_{1}}(z_{1}^{2}-3z_{2}^{2})=2 and z2(3z12z22)=11{{z}_{2}}(3z_{1}^{2}-z_{2}^{2})=11. The first step to solve the equation is to number the two equations:
z1(z123z22)=2{{z}_{1}}(z_{1}^{2}-3z_{2}^{2})=2……………..(1)
z2(3z12z22)=11{{z}_{2}}(3z_{1}^{2}-z_{2}^{2})=11…………….(2)
We will multiply the second equation with “i” making the number complex. On doing this we get:
3z12z2iz23i=11i\Rightarrow 3z_{1}^{2}{{z}_{2}}i-z_{2}^{3}i=11i …………. (3)
We will now add the equation (1) and (3). On doing this we get:
3z12z2iz23i+z133z22z1=2+11i\Rightarrow 3z_{1}^{2}{{z}_{2}}i-z_{2}^{3}i+z_{1}^{3}-3z_{2}^{2}{{z}_{1}}=2+11i
We will apply the formula (a+b)3=a3+b3+3ab(a+b){{(a+b)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right) to change the above expression.
(z1+iz2)3=2+11i\Rightarrow {{\left( {{z}_{1}}+i{{z}_{2}} \right)}^{3}}=2+11i……………..(4)
We will now subtract the equation (2) from equation (1). On doing this we get:
z133z22z13z12z2i+z23i=211i\Rightarrow z_{1}^{3}-3z_{2}^{2}{{z}_{1}}-3z_{1}^{2}{{z}_{2}}i+z_{2}^{3}i=2-11i
We will apply the formula (ab)3=a3b3+3ab(ab){{(a-b)}^{3}}={{a}^{3}}-{{b}^{3}}+3ab\left( a-b \right) to change the above expression.
(z1iz2)3=211i\Rightarrow {{\left( {{z}_{1}}-i{{z}_{2}} \right)}^{3}}=2-11i……………..(5)
Now the most important step, which is to multiply the equation (4) and equation (5). On doing this we get:
(z1iz2)3(z1+iz2)3=(211i)(2+11i)\Rightarrow {{\left( {{z}_{1}}-i{{z}_{2}} \right)}^{3}}{{\left( {{z}_{1}}+i{{z}_{2}} \right)}^{3}}=\left( 2-11i \right)\left( 2+11i \right)
((z1iz2)(z1+iz2))3=(211i)(2+11i)\Rightarrow (\left( {{z}_{1}}-i{{z}_{2}} \right){{\left( {{z}_{1}}+i{{z}_{2}}) \right)}^{3}}=\left( 2-11i \right)\left( 2+11i \right)
We will use the formula a2b2=(ab)(a+b){{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right) for the further calculation of the above equation:
(z12+z22)3=(22(11i)2)\Rightarrow {{\left( z_{1}^{2}+z_{2}^{2} \right)}^{3}}=\left( {{2}^{2}}-{{(11i)}^{2}} \right)
We should know that i2=1{{i}^{2}}=1. So applying the same we get:
(z12+z22)3=(4+121)\Rightarrow {{\left( z_{1}^{2}+z_{2}^{2} \right)}^{3}}=\left( 4+121 \right)
(z12+z22)3=125\Rightarrow {{\left( z_{1}^{2}+z_{2}^{2} \right)}^{3}}=125
z12+z22=1253\Rightarrow z_{1}^{2}+z_{2}^{2}=\sqrt[3]{125}
The cube root of the 125125 is 55.
z12+z22=5\Rightarrow z_{1}^{2}+z_{2}^{2}=5
\therefore The value of z12+z22z_{1}^{2}+z_{2}^{2} is A)5A)5.

Note: The complex number is presented as z=a+ibz=a+ib , here aa and bb are real and imaginary parts of the complex number respectively. Complex numbers can be real when there is no presence of an imaginary term or iota.