Solveeit Logo

Question

Mathematics Question on complex numbers

If z1,z2z_1, z_2 are two distinct complex numbers such that z12z212z1z2=2,\frac{|z_1 - 2z_2|}{\left| \frac{1}{2} - z_1 \overline{z_2} \right|} = 2, then

A

either z1z_1 lies on a circle of radius 1 or z2z_2 lies on a circle of radius 12\frac{1}{2}.

B

either z1z_1 lies on a circle of radius 12\frac{1}{2} or z2z_2 lies on a circle of radius 1.

C

z1z_1 lies on a circle of radius 12\frac{1}{2} and z2z_2 lies on a circle of radius 1.

D

both z1z_1 and z2z_2 lie on the same circle.

Answer

either z1z_1 lies on a circle of radius 1 or z2z_2 lies on a circle of radius 12\frac{1}{2}.

Explanation

Solution

z12z2122z1z2×z12z212z1z2=4\frac{z_1 - 2z_2}{\frac{1}{2} - 2z_1z_2} \times \frac{\overline{z_1} - 2\overline{z_2}}{\frac{1}{2} - z_1z_2} = 4

z122z1z22z2z1+4z222\lvert z_1 \rvert^2 \left\lvert 2z_1z_2 - 2z_2\overline{z_1} + 4\lvert z_2 \rvert^2 \right\rvert^2

=4(14(z1z2z2z1)2+z12z22)= 4 \left( \frac{1}{4}(z_1\overline{z_2} - z_2\overline{z_1})^2 + \lvert z_1 \rvert^2 \lvert z_2 \rvert^2 \right)

z1z1+2z22z2z1z2z2z21=0z_1\overline{z_1} + 2z_2 \cdot 2\overline{z_2} - z_1z_2 \cdot z_2\overline{z_2} - 1 = 0

(z1z11)(12z2z2)=0(z_1\overline{z_1} - 1)(1 - 2z_2\overline{z_2}) = 0

(z121)((2z221))=0(\lvert z_1 \rvert^2 - 1)\left((2\lvert z_2 \rvert^2 - 1)\right) = 0