Question
Mathematics Question on complex numbers
If z1,z2 are two distinct complex numbers such that ∣21−z1z2∣∣z1−2z2∣=2, then
A
either z1 lies on a circle of radius 1 or z2 lies on a circle of radius 21.
B
either z1 lies on a circle of radius 21 or z2 lies on a circle of radius 1.
C
z1 lies on a circle of radius 21 and z2 lies on a circle of radius 1.
D
both z1 and z2 lie on the same circle.
Answer
either z1 lies on a circle of radius 1 or z2 lies on a circle of radius 21.
Explanation
Solution
21−2z1z2z1−2z2×21−z1z2z1−2z2=4
∣z1∣22z1z2−2z2z1+4∣z2∣22
=4(41(z1z2−z2z1)2+∣z1∣2∣z2∣2)
z1z1+2z2⋅2z2−z1z2⋅z2z2−1=0
(z1z1−1)(1−2z2z2)=0
(∣z1∣2−1)((2∣z2∣2−1))=0