Question
Mathematics Question on Complex Numbers and Quadratic Equations
If z1,z2 are two complex numbers and such that z1+z2z1−z2=1 and iz1=Kz2 where K∈R, then the angle between z1−z2 and z1+z2 is
A
tan−1(K2+12K)
B
tan−1(1−K22K)
C
−2tan−1K
D
2tan−1K
Answer
2tan−1K
Explanation
Solution
Let z1+z2z1−z2=cosα+isinα ∴−2z22z1=1−cosα−isinα1+cosα+isinα =−2isin2αcos2α+2sin22α2cos22α+2isin2αcos2α =−2isin2αi[cos2α+isin2α]2cos2α[cos2α+sin2α] ⇒z2z1=icot2α ⇒iz1=−cot2α⋅z2 But iz1=Kz2 ∴K=−cot2α ∴tan2α=−K1. Now tanα=1−tan2α/22tanα/2 =1−K21−K2=K2−1−2K ∴α=tan−1(1−K22K) =2tan−1(K) Now z1+z2z1−z2=cosα+isinα ⇒α is the angle between z1−z2 and z1+z2. ⇒α=2tan−1K is the angle between z1−z2 and z1+z2