Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

If z1,z2z_1,z_2 are two complex numbers and such that z1z2z1+z2=1\left|\frac{z_1-z_2}{z_1+z_2}\right|=1 and iz1=Kz2iz_1=Kz_2 where KRK\,\in\,R, then the angle between z1z2z_1-z_2 and z1+z2z_1+z_2 is

A

tan1(2KK2+1)tan^{-1}\left(\frac{2K}{K^2+1}\right)

B

tan1(2K1K2)tan^{-1}\left(\frac{2K}{1-K^2}\right)

C

2tan1K-2 \,tan^{-1}K

D

2tan1K2 \,tan^{-1}K

Answer

2tan1K2 \,tan^{-1}K

Explanation

Solution

Let z1z2z1+z2=cosα+isinα\frac{z_{1}-z_{2}}{z_{1}+z_{2}}=cos\,\alpha+i\,sin\,\alpha 2z12z2=1+cosα+isinα1cosαisinα\therefore \frac{2z_{1}}{-2z_{2}}=\frac{1+cos\,\alpha+i\,sin\,\alpha}{1-cos\,\alpha-i\,sin\,\alpha} =2cos2α2+2isinα2cosα22isinα2cosα2+2sin2α2=\frac{2\,cos^{2} \frac{\alpha}{2}+2i\,sin \frac{\alpha}{2} cos \frac{\alpha}{2}}{-2i\,sin \frac{\alpha}{2} cos \frac{\alpha}{2}+2\,sin^{2} \frac{\alpha}{2}} =2cosα2[cosα2+sinα2]2isinα2i[cosα2+isinα2]=\frac{2\,cos \frac{\alpha}{2}\left[cos \frac{\alpha}{2}+sin \frac{\alpha}{2}\right]}{-2i\,sin \frac{\alpha}{2} i\left[cos \frac{\alpha}{2}+i\,sin \frac{\alpha}{2}\right]} z1z2=icotα2\Rightarrow \frac{z_{1}}{z_{2}}=i\,cot \frac{\alpha}{2} iz1=cotα2z2\Rightarrow i\,z_{1}=-cot \frac{\alpha}{2}\cdot z_{2} But iz1=Kz2i\,z_{1}=K\,z_{2} K=cotα2\therefore K=-cot \frac{\alpha}{2} tanα2=1K\therefore tan \frac{\alpha}{2}=-\frac{1}{K}. Now tanα=2tanα/21tan2α/2tan\,\alpha=\frac{2\,tan\,\alpha/2}{1-tan^{2}\,\alpha/2} =2K11K2=2KK21=\frac{-\frac{2}{K}}{1-\frac{1}{K^{2}}}=\frac{-2K}{K^{2}-1} α=tan1(2K1K2)\therefore \alpha=tan^{-1}\left(\frac{2K}{1-K^{2}}\right) =2tan1(K)=2\,tan^{-1}\left(K\right) Now z1z2z1+z2=cosα+isinα\frac{z_{1}-z_{2}}{z_{1}+z_{2}}=cos\,\alpha+i\,sin\,\alpha α\Rightarrow \alpha is the angle between z1z2z_{1}-z_{2} and z1+z2z_{1}+z_{2}. α=2tan1K\Rightarrow \alpha=2\,tan^{-1}\,K is the angle between z1z2z_{1}-z_{2} and z1+z2z_{1}+z_{2}