Solveeit Logo

Question

Question: If \({{z}_{1}}\), \({{z}_{2}}\) are \(1-i\), \(-2+4i\), respectively, find \(\operatorname{Im}\left(...

If z1{{z}_{1}}, z2{{z}_{2}} are 1i1-i, 2+4i-2+4i, respectively, find Im(z1z2z1)\operatorname{Im}\left( \dfrac{{{z}_{1}}{{z}_{2}}}{\overline{{{z}_{1}}}} \right).

Explanation

Solution

We will first multiply the given two complex numbers. We will find the conjugate of z1{{z}_{1}}. Then we will get a fraction z1z2z1\dfrac{{{z}_{1}}{{z}_{2}}}{\overline{{{z}_{1}}}}. We will rationalize this fraction by multiplying the numerator and denominator by the conjugate of the denominator. Then we will obtain a complex number of the form Re(z1z2z1)+iIm(z1z2z1)\operatorname{Re}\left( \dfrac{{{z}_{1}}{{z}_{2}}}{\overline{{{z}_{1}}}} \right)+i\operatorname{Im}\left( \dfrac{{{z}_{1}}{{z}_{2}}}{\overline{{{z}_{1}}}} \right). From this we will get the desired answer.

Complete step by step answer:
We have z1=1i{{z}_{1}}=1-i and z2=2+4i{{z}_{2}}=-2+4i. Now, if we have two complex numbers x1+iy1{{x}_{1}}+i{{y}_{1}} and x2+iy2{{x}_{2}}+i{{y}_{2}}, then the multiplication of these two numbers is given as

(x1+iy1)(x2+iy2)=x1x2+iy1x2+iy2x1+i2y1y2 (x1+iy1)(x2+iy2)=x1x2+iy1x2+iy2x1y1y2 (x1+iy1)(x2+iy2)=(x1x2y1y2)+i(x1y2+x2y1) \begin{aligned} & \left( {{x}_{1}}+i{{y}_{1}} \right)\left( {{x}_{2}}+i{{y}_{2}} \right)={{x}_{1}}{{x}_{2}}+i{{y}_{1}}{{x}_{2}}+i{{y}_{2}}{{x}_{1}}+{{i}^{2}}{{y}_{1}}{{y}_{2}} \\\ & \Rightarrow \left( {{x}_{1}}+i{{y}_{1}} \right)\left( {{x}_{2}}+i{{y}_{2}} \right)={{x}_{1}}{{x}_{2}}+i{{y}_{1}}{{x}_{2}}+i{{y}_{2}}{{x}_{1}}-{{y}_{1}}{{y}_{2}} \\\ & \therefore \left( {{x}_{1}}+i{{y}_{1}} \right)\left( {{x}_{2}}+i{{y}_{2}} \right)=\left( {{x}_{1}}{{x}_{2}}-{{y}_{1}}{{y}_{2}} \right)+i\left( {{x}_{1}}{{y}_{2}}+{{x}_{2}}{{y}_{1}} \right) \\\ \end{aligned}
So, we get the following
z1z2=(1i)(2+4i) z1z2=(1(2)(1)4)+i(14+(2)(1)) z1z2=(2+4)+i(4+2) z1z2=(2)+i(6) z1z2=2+6i \begin{aligned} & {{z}_{1}}{{z}_{2}}=\left( 1-i \right)\left( -2+4i \right) \\\ & \Rightarrow {{z}_{1}}{{z}_{2}}=\left( 1\cdot \left( -2 \right)-\left( -1 \right)\cdot 4 \right)+i\left( 1\cdot 4+\left( -2 \right)\cdot \left( -1 \right) \right) \\\ & \Rightarrow {{z}_{1}}{{z}_{2}}=\left( -2+4 \right)+i\left( 4+2 \right) \\\ & \Rightarrow {{z}_{1}}{{z}_{2}}=\left( 2 \right)+i\left( 6 \right) \\\ & \therefore {{z}_{1}}{{z}_{2}}=2+6i \\\ \end{aligned}
Now, in the denominator we have z1\overline{{{z}_{1}}}, which is the conjugate of z1{{z}_{1}}. Therefore, we have z1=1+i{{z}_{1}}=1+i. So, we get the fraction as
z1z2z1=2+6i1+i\dfrac{{{z}_{1}}{{z}_{2}}}{\overline{{{z}_{1}}}}=\dfrac{2+6i}{1+i}
Now, we have to rationalize the fraction obtained. To do this, we will multiply the numerator and denominator by the conjugate of the denominator. The denominator is z1\overline{{{z}_{1}}}, so its conjugate is the complex number z1{{z}_{1}} itself. So, we will rationalize the obtained fraction in the following manner,
z1z2z1=2+6i1+i×1i1i\dfrac{{{z}_{1}}{{z}_{2}}}{\overline{{{z}_{1}}}}=\dfrac{2+6i}{1+i}\times \dfrac{1-i}{1-i}
Again, for multiplication in the numerator, we will use the following expression, (x1+iy1)(x2+iy2)=(x1x2y1y2)+i(x1y2+x2y1)\left( {{x}_{1}}+i{{y}_{1}} \right)\left( {{x}_{2}}+i{{y}_{2}} \right)=\left( {{x}_{1}}{{x}_{2}}-{{y}_{1}}{{y}_{2}} \right)+i\left( {{x}_{1}}{{y}_{2}}+{{x}_{2}}{{y}_{1}} \right). For the expression in the denominator, we can see that it can be written using the algebraic identity (a+b)(ab)=a2b2\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}. So, using these identities, we get the following
z1z2z1=(2161)+i(21+61)12i2\dfrac{{{z}_{1}}{{z}_{2}}}{\overline{{{z}_{1}}}}=\dfrac{\left( 2\cdot 1-6\cdot -1 \right)+i\left( 2\cdot -1+6\cdot 1 \right)}{{{1}^{2}}-{{i}^{2}}}
Simplifying the above fraction, we get
z1z2z1=(2+6)+i(2+6)1(1) z1z2z1=(8)+i(4)1+1 z1z2z1=8+4i2 z1z2z1=4+2i \begin{aligned} & \dfrac{{{z}_{1}}{{z}_{2}}}{\overline{{{z}_{1}}}}=\dfrac{\left( 2+6 \right)+i\left( -2+6 \right)}{1-\left( -1 \right)} \\\ & \Rightarrow \dfrac{{{z}_{1}}{{z}_{2}}}{\overline{{{z}_{1}}}}=\dfrac{\left( 8 \right)+i\left( 4 \right)}{1+1} \\\ & \Rightarrow \dfrac{{{z}_{1}}{{z}_{2}}}{\overline{{{z}_{1}}}}=\dfrac{8+4i}{2} \\\ & \therefore \dfrac{{{z}_{1}}{{z}_{2}}}{\overline{{{z}_{1}}}}=4+2i \\\ \end{aligned}
Comparing the obtained simplification of the fraction with Re(z1z2z1)+iIm(z1z2z1)\operatorname{Re}\left( \dfrac{{{z}_{1}}{{z}_{2}}}{\overline{{{z}_{1}}}} \right)+i\operatorname{Im}\left( \dfrac{{{z}_{1}}{{z}_{2}}}{\overline{{{z}_{1}}}} \right), we get that Im(z1z2z1)=2\operatorname{Im}\left( \dfrac{{{z}_{1}}{{z}_{2}}}{\overline{{{z}_{1}}}} \right)=2.

Note: If we have a complex number and its conjugate, then the conjugate of the conjugate is the complex number itself. That means (z)=z\overline{\left( \overline{z} \right)}=z. The rationalization of a fraction works because of the algebraic identity a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right). Using this identity, we are able to eliminate the ii from the denominator and achieve simplification.