Solveeit Logo

Question

Question: If \(|{z_1} + {z_2}{|^2} = |{z_1}{|^2} + |{z_2}{|^2}\) , then \(\dfrac{{{z_1}}}{{{z_2}}}\) is (1) ...

If z1+z22=z12+z22|{z_1} + {z_2}{|^2} = |{z_1}{|^2} + |{z_2}{|^2} , then z1z2\dfrac{{{z_1}}}{{{z_2}}} is
(1) purely real
(2) purely imaginary
(3) zero of purely imaginary
(4) neither real nor imaginary

Explanation

Solution

Hint : A complex number is a number that can be expressed in the form a+iba + ib , where aa and bb are real numbers, and ii is a symbol called the imaginary unit, and satisfying the equation i2=1{i^2} = - 1 . First we analyze the square part and omit the same term and then we get the required answer.

Complete step-by-step answer :
First we collect the given data z1+z22=z12+z22|{z_1} + {z_2}{|^2} = |{z_1}{|^2} + |{z_2}{|^2}
We use the property z1+z22=(z1+z2)(z1+z2)|{z_1} + {z_2}{|^2} = ({z_1} + {z_2})(\overline {{z_1}} + \overline {{z_2}} ) and we get
(z1+z2)(z1+z2)=z12+z22({z_1} + {z_2})(\overline {{z_1}} + \overline {{z_2}} ) = |{z_1}{|^2} + |{z_2}{|^2}
Now we know that (z1+z2)(z1+z2)=z12+z22+z1z2+z2z1({z_1} + {z_2})(\overline {{z_1}} + \overline {{z_2}} ) = |{z_1}{|^2} + |{z_2}{|^2} + {z_1}\overline {{z_2}} + {z_2}\overline {{z_1}}
Use this in the above equation and we get
z12+z22+z1z2+z2z1=z12+z22\Rightarrow |{z_1}{|^2} + |{z_2}{|^2} + {z_1}\overline {{z_2}} + {z_2}\overline {{z_1}} = |{z_1}{|^2} + |{z_2}{|^2}
Now we omit the similar terms and we get
z1z2+z2z1=0\Rightarrow {z_1}\overline {{z_2}} + {z_2}\overline {{z_1}} = 0
Now we divide both sides of the above equation by z2z2{z_2}\overline {{z_2}} , we get
z1z2+z2z1z2z2=0z2z2\Rightarrow \dfrac{{{z_1}\overline {{z_2}} + {z_2}\overline {{z_1}} }}{{{z_2}\overline {{z_2}} }} = \dfrac{0}{{{z_2}\overline {{z_2}} }}
Now we simplifying above equation and omit the similar terms and we get
z1z2z2z2+z2z1z2z2=0\Rightarrow \dfrac{{{z_1}\overline {{z_2}} }}{{{z_2}\overline {{z_2}} }} + \dfrac{{{z_2}\overline {{z_1}} }}{{{z_2}\overline {{z_2}} }} = 0
z1z2+z1z2=0\Rightarrow \dfrac{{{z_1}}}{{{z_2}}} + \dfrac{{\overline {{z_1}} }}{{\overline {{z_2}} }} = 0
To finding the answer let us consider z1z2=x+iy\dfrac{{{z_1}}}{{{z_2}}} = x + iy and z1z2=xiy\dfrac{{\overline {{z_1}} }}{{\overline {{z_2}} }} = x - iy
Use this in above equation and we get
(x+iy)+(xiy)=0\Rightarrow (x + iy) + (x - iy) = 0
2x=0\Rightarrow 2x = 0
From the above equation we say that the real part of (z1z2)\left( {\dfrac{{{z_1}}}{{{z_2}}}} \right) is zero.
i.e., Re(z1z2)=0\operatorname{Re} \left( {\dfrac{{{z_1}}}{{{z_2}}}} \right) = 0
From the above condition we can say that the z1z2\dfrac{{{z_1}}}{{{z_2}}} is purely imaginary.
So, the correct answer is “Option 2”.

Note : We try to remember the property of complex numbers. We remember that the double bar of a complex number is always the complex number itself. The part Re(z)\operatorname{Re} (z) is equal to z+zz + \overline z , where z=a+ibz = a + ib and z=aib\overline z = a - ib . If we get the real part of a function is zero then always remember this function is purely imaginary. We use the property of complex number z1+z22=(z1+z2)(z1+z2)|{z_1} + {z_2}{|^2} = ({z_1} + {z_2})(\overline {{z_1}} + \overline {{z_2}} ) to simplify the method of solving and easy to understand.